The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Článek je věnován kombinatorickým hrám a matematickým technikám, které mohou být použity při jejich analýze. Zavedeme nestranné hry, naučíme se pracovat s P a N pozicemi a Grundyovými čísly. Sprague-Grundyova věta říká, že každá pozice v konečné nestranné kombinatorické hře je ekvivalentní nějaké hře Nim na jedné hromádce. Na závěr se zmíníme o součinu nim čísel, které lze použít k analýze některých kombinatorických her.
Angloamerický matematik John Horton Conway byl všestrannou a charismatickou postavou, která významně ovlivnila teorie čísel, grup, her, uzlů, dynamických systémů i rekreační matematiku. Proslul svéráznou povahou i nekonvenčním přístupem k řešení problémů. Tento článek shrnuje stručně jeho neobvyklou životní cestu a představuje čtyři vybrané oblasti z jeho bohaté tvorby: nadreálná čísla, teorii kombinatorických her, hru života a klasifikaci sporadických grup.
Download Results (CSV)