Lagrange schwarzian derivative and symplectic Sturm theory
We prove the existence and the uniqueness of a conformally equivariant symbol calculus and quantization on any conformally flat pseudo-riemannian manifold . In other words, we establish a canonical isomorphism between the spaces of polynomials on and of differential operators on tensor densities over , both viewed as modules over the Lie algebra where . This quantization exists for generic values of the weights of the tensor densities and we compute the critical values of the weights yielding...
We study 2-frieze patterns generalizing that of the classical Coxeter-Conway frieze patterns. The geometric realization of this space is the space of -gons (in the projective plane and in 3-dimensional vector space) which is a close relative of the moduli space of genus curves with marked points. We show that the space of 2-frieze patterns is a cluster manifold and study its algebraic and arithmetic properties.
Page 1