The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

The topology of the space of ℋ𝒦 integrable functions in n

Varayu Boonpogkrong — 2025

Czechoslovak Mathematical Journal

It is known that there is no natural Banach norm on the space ℋ𝒦 of n -dimensional Henstock-Kurzweil integrable functions on [ a , b ] . We show that the ℋ𝒦 space is the uncountable union of Fréchet spaces ℋ𝒦 ( X ) . On each ℋ𝒦 ( X ) space, an F -norm · X is defined. A · X -convergent sequence is equivalent to a control-convergent sequence. Furthermore, an F -norm is also defined for a · X -continuous linear operator. Hence, many important results in functional analysis hold for the ℋ𝒦 ( X ) space. It is well-known that every control-convergent...

Compact operators and integral equations in the ℋ𝒦 space

Varayu Boonpogkrong — 2022

Czechoslovak Mathematical Journal

The space ℋ𝒦 of Henstock-Kurzweil integrable functions on [ a , b ] is the uncountable union of Fréchet spaces ℋ𝒦 ( X ) . In this paper, on each Fréchet space ℋ𝒦 ( X ) , an F -norm is defined for a continuous linear operator. Hence, many important results in functional analysis, like the Banach-Steinhaus theorem, the open mapping theorem and the closed graph theorem, hold for the ℋ𝒦 ( X ) space. It is known that every control-convergent sequence in the ℋ𝒦 space always belongs to a ℋ𝒦 ( X ) space for some X . We illustrate how to apply results...

Page 1

Download Results (CSV)