The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
It is known that there is no natural Banach norm on the space of -dimensional Henstock-Kurzweil integrable functions on . We show that the space is the uncountable union of Fréchet spaces . On each space, an -norm is defined. A -convergent sequence is equivalent to a control-convergent sequence. Furthermore, an -norm is also defined for a -continuous linear operator. Hence, many important results in functional analysis hold for the space. It is well-known that every control-convergent...
The space of Henstock-Kurzweil integrable functions on is the uncountable union of Fréchet spaces . In this paper, on each Fréchet space , an -norm is defined for a continuous linear operator. Hence, many important results in functional analysis, like the Banach-Steinhaus theorem, the open mapping theorem and the closed graph theorem, hold for the space. It is known that every control-convergent sequence in the space always belongs to a space for some . We illustrate how to apply results...
In 1938, L. C. Young proved that the Moore-Pollard-Stieltjes integral exists if , and . In this note we use the Henstock-Kurzweil approach to handle the above integral defined by Young.
Download Results (CSV)