The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A three-parameter family of Boussinesq type systems in two space
dimensions is considered. These systems approximate the
three-dimensional Euler equations, and consist of three nonlinear
dispersive wave equations that describe two-way propagation of
long surface waves of small amplitude in ideal fluids over a
horizontal bottom. For a subset of these systems it is proved that
their Cauchy problem is locally well-posed in suitable Sobolev
classes. Further, a class of these systems is discretized...
Download Results (CSV)