Solving the systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods
Georgios Akrivis; Vassilios A. Dougalis; Ohannes Karakashian
- Volume: 31, Issue: 2, page 251-287
- ISSN: 0764-583X
Access Full Article
topHow to cite
topAkrivis, Georgios, Dougalis, Vassilios A., and Karakashian, Ohannes. "Solving the systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.2 (1997): 251-287. <http://eudml.org/doc/193837>.
@article{Akrivis1997,
author = {Akrivis, Georgios, Dougalis, Vassilios A., Karakashian, Ohannes},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {implicit Runge-Kutta method; nonlinear Schrödinger equation; iterative methods; nonlinear equations; nonlinear evoluton equations; Newton method; Korteweg-de Vries equation},
language = {eng},
number = {2},
pages = {251-287},
publisher = {Dunod},
title = {Solving the systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods},
url = {http://eudml.org/doc/193837},
volume = {31},
year = {1997},
}
TY - JOUR
AU - Akrivis, Georgios
AU - Dougalis, Vassilios A.
AU - Karakashian, Ohannes
TI - Solving the systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 2
SP - 251
EP - 287
LA - eng
KW - implicit Runge-Kutta method; nonlinear Schrödinger equation; iterative methods; nonlinear equations; nonlinear evoluton equations; Newton method; Korteweg-de Vries equation
UR - http://eudml.org/doc/193837
ER -
References
top- [1] G. D. AKRIVIS, V. A. DOUGALIS and O. A. KARAKASHIAN, 1991, On fully discrete Galerkin methods of second-order temporal accuracy for the Nonlinear Schrödinger Equation, Numer. Math., 59, pp. 31-53. Zbl0739.65096MR1103752
- [2] R. ALEXANDER, 1991, The modified Newton method in the solution of stiff ordinary differential equations, Math. Comp., 57, pp. 673-701. Zbl0734.65060MR1094939
- [3] G. A. BAKER, V. A. DOUGALIS and O. A. KARAKASHIAN, 1983, Convergence of Galerkin approximations for the Korteweg-de Vries equation, Math. Comp., 40, pp. 419-433. Zbl0519.65073MR689464
- [4] J. L. BONA, V. A. DOUGALIS, O. A. KARAKASHIAN and W. R. McKlNNEY, 1995, Conservative high order numerical methods for the generalized Korteweg-de Vries equation, Phil. Trans. Roy. Soc. London Ser. A, 351, pp. 107-164. Zbl0824.65095MR1336983
- [5] J. L. BONA and R. SMITH, 1975, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A, 298, pp. 555-604. Zbl0306.35027MR385355
- [6] J. C. BUTCHER, 1987, The numerical analysis of ordinary differerential equations. Runge-Kutta and general linear methods, John Wiley & Sons. Zbl0616.65072MR878564
- [7] M. CROUZEIX, W. H. HUNDSDORFER and M. N. SPIJKER, 1983, On the existence of solutions to the algebraic equations in implicit Runge-Kutta methods, BIT, 23, pp. 84-91. Zbl0506.65030MR689606
- [8] V. A. DOUGALIS and O. A. KARAKASHIAN, 1985, On some high order accurate fully discrete Galerkin methods for the Korteweg-de Vries equation, Math. Comp., 45, pp. 329-345. Zbl0609.65064MR804927
- [9] E. HAIRER and G. WANNER, 1991, Solving ordinary differential equations II. Stiff and differential-algebraic problems, Springer series in Computational Mathematics, Springer Verlag. Zbl0729.65051MR1111480
- [10] O. KARAKASHIAN and W. RUST, 1988, On the parallel implementation of implicit Runge-Kuta methods, SIAM J. Sci. Sta. Comput., 9, pp. 1085-1090. Zbl0664.65068MR963856
- [11] O. KARAKASHIAN, G. D. AKRIVIS and V. A. DOUGALIS, 1993, On optimal-order error estimates for the Nonlinear Schrödinger Equation, SIAM J. Numer. Anal., 30, pp. 377-400. Zbl0774.65091MR1211396
- [12] O. KARAKASHIAN and W. MCKINNEY, 1990, On optimal high order in time approximations for the Korteweg-de Vries equation, Math. Comp., 55, pp. 473-496. Zbl0725.65107MR1035935
- [13] J. M. SANZ-SERNA and D. F. GRIFFITHS, 1991, A new class of results for the algebraic equations of implicit Runge-Kutta processes, IMA Journal of Numerical Analysis, 11, pp. 449-455. Zbl0738.65067MR1135198
- [14] V. THOMÉE and B. WENDROFF, 1974, Convergence estimates for Galerkin methods for variable coefficient initial value problems, SIAM J. Numer. Anal., 11, pp. 1059-1068. Zbl0292.65052MR371088
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.