Solving the systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods

Georgios Akrivis; Vassilios A. Dougalis; Ohannes Karakashian

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1997)

  • Volume: 31, Issue: 2, page 251-287
  • ISSN: 0764-583X

How to cite

top

Akrivis, Georgios, Dougalis, Vassilios A., and Karakashian, Ohannes. "Solving the systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.2 (1997): 251-287. <http://eudml.org/doc/193837>.

@article{Akrivis1997,
author = {Akrivis, Georgios, Dougalis, Vassilios A., Karakashian, Ohannes},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {implicit Runge-Kutta method; nonlinear Schrödinger equation; iterative methods; nonlinear equations; nonlinear evoluton equations; Newton method; Korteweg-de Vries equation},
language = {eng},
number = {2},
pages = {251-287},
publisher = {Dunod},
title = {Solving the systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods},
url = {http://eudml.org/doc/193837},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Akrivis, Georgios
AU - Dougalis, Vassilios A.
AU - Karakashian, Ohannes
TI - Solving the systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 2
SP - 251
EP - 287
LA - eng
KW - implicit Runge-Kutta method; nonlinear Schrödinger equation; iterative methods; nonlinear equations; nonlinear evoluton equations; Newton method; Korteweg-de Vries equation
UR - http://eudml.org/doc/193837
ER -

References

top
  1. [1] G. D. AKRIVIS, V. A. DOUGALIS and O. A. KARAKASHIAN, 1991, On fully discrete Galerkin methods of second-order temporal accuracy for the Nonlinear Schrödinger Equation, Numer. Math., 59, pp. 31-53. Zbl0739.65096MR1103752
  2. [2] R. ALEXANDER, 1991, The modified Newton method in the solution of stiff ordinary differential equations, Math. Comp., 57, pp. 673-701. Zbl0734.65060MR1094939
  3. [3] G. A. BAKER, V. A. DOUGALIS and O. A. KARAKASHIAN, 1983, Convergence of Galerkin approximations for the Korteweg-de Vries equation, Math. Comp., 40, pp. 419-433. Zbl0519.65073MR689464
  4. [4] J. L. BONA, V. A. DOUGALIS, O. A. KARAKASHIAN and W. R. McKlNNEY, 1995, Conservative high order numerical methods for the generalized Korteweg-de Vries equation, Phil. Trans. Roy. Soc. London Ser. A, 351, pp. 107-164. Zbl0824.65095MR1336983
  5. [5] J. L. BONA and R. SMITH, 1975, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A, 298, pp. 555-604. Zbl0306.35027MR385355
  6. [6] J. C. BUTCHER, 1987, The numerical analysis of ordinary differerential equations. Runge-Kutta and general linear methods, John Wiley & Sons. Zbl0616.65072MR878564
  7. [7] M. CROUZEIX, W. H. HUNDSDORFER and M. N. SPIJKER, 1983, On the existence of solutions to the algebraic equations in implicit Runge-Kutta methods, BIT, 23, pp. 84-91. Zbl0506.65030MR689606
  8. [8] V. A. DOUGALIS and O. A. KARAKASHIAN, 1985, On some high order accurate fully discrete Galerkin methods for the Korteweg-de Vries equation, Math. Comp., 45, pp. 329-345. Zbl0609.65064MR804927
  9. [9] E. HAIRER and G. WANNER, 1991, Solving ordinary differential equations II. Stiff and differential-algebraic problems, Springer series in Computational Mathematics, Springer Verlag. Zbl0729.65051MR1111480
  10. [10] O. KARAKASHIAN and W. RUST, 1988, On the parallel implementation of implicit Runge-Kuta methods, SIAM J. Sci. Sta. Comput., 9, pp. 1085-1090. Zbl0664.65068MR963856
  11. [11] O. KARAKASHIAN, G. D. AKRIVIS and V. A. DOUGALIS, 1993, On optimal-order error estimates for the Nonlinear Schrödinger Equation, SIAM J. Numer. Anal., 30, pp. 377-400. Zbl0774.65091MR1211396
  12. [12] O. KARAKASHIAN and W. MCKINNEY, 1990, On optimal high order in time approximations for the Korteweg-de Vries equation, Math. Comp., 55, pp. 473-496. Zbl0725.65107MR1035935
  13. [13] J. M. SANZ-SERNA and D. F. GRIFFITHS, 1991, A new class of results for the algebraic equations of implicit Runge-Kutta processes, IMA Journal of Numerical Analysis, 11, pp. 449-455. Zbl0738.65067MR1135198
  14. [14] V. THOMÉE and B. WENDROFF, 1974, Convergence estimates for Galerkin methods for variable coefficient initial value problems, SIAM J. Numer. Anal., 11, pp. 1059-1068. Zbl0292.65052MR371088

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.