The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Strict u-ideals in Banach spaces

Vegard LimaÅsvald Lima — 2009

Studia Mathematica

We study strict u-ideals in Banach spaces. A Banach space X is a strict u-ideal in its bidual when the canonical decomposition X * * * = X * X is unconditional. We characterize Banach spaces which are strict u-ideals in their bidual and show that if X is a strict u-ideal in a Banach space Y then X contains c₀. We also show that is not a u-ideal.

On the compact approximation property

Vegard LimaÅsvald LimaOlav Nygaard — 2004

Studia Mathematica

We show that a Banach space X has the compact approximation property if and only if for every Banach space Y and every weakly compact operator T: Y → X, the space = S ∘ T: S compact operator on X is an ideal in = span(,T) if and only if for every Banach space Y and every weakly compact operator T: Y → X, there is a net ( S γ ) of compact operators on X such that s u p γ | | S γ T | | | | T | | and S γ I X in the strong operator topology. Similar results for dual spaces are also proved.

Unconditional ideals of finite rank operators

Trond A. AbrahamsenAsvald LimaVegard Lima — 2008

Czechoslovak Mathematical Journal

Let X be a Banach space. We give characterizations of when ( Y , X ) is a u -ideal in 𝒲 ( Y , X ) for every Banach space Y in terms of nets of finite rank operators approximating weakly compact operators. Similar characterizations are given for the cases when ( X , Y ) is a u -ideal in 𝒲 ( X , Y ) for every Banach space Y , when ( Y , X ) is a u -ideal in 𝒲 ( Y , X * * ) for every Banach space Y , and when ( Y , X ) is a u -ideal in 𝒦 ( Y , X * * ) for every Banach space Y .

Page 1

Download Results (CSV)