We study strict u-ideals in Banach spaces. A Banach space X is a strict u-ideal in its bidual when the canonical decomposition is unconditional. We characterize Banach spaces which are strict u-ideals in their bidual and show that if X is a strict u-ideal in a Banach space Y then X contains c₀. We also show that is not a u-ideal.
We show that a Banach space X has the compact approximation property if and only if for every Banach space Y and every weakly compact operator T: Y → X, the space
= S ∘ T: S compact operator on X
is an ideal in = span(,T) if and only if for every Banach space Y and every weakly compact operator T: Y → X, there is a net of compact operators on X such that and in the strong operator topology. Similar results for dual spaces are also proved.
Let be a Banach space. We give characterizations of when is a -ideal in for every Banach space in terms of nets of finite rank operators approximating weakly compact operators. Similar characterizations are given for the cases when is a -ideal in for every Banach space , when is a -ideal in for every Banach space , and when is a -ideal in for every Banach space .
Download Results (CSV)