The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study strict u-ideals in Banach spaces. A Banach space X is a strict u-ideal in its bidual when the canonical decomposition is unconditional. We characterize Banach spaces which are strict u-ideals in their bidual and show that if X is a strict u-ideal in a Banach space Y then X contains c₀. We also show that is not a u-ideal.
We show that a Banach space X has the compact approximation property if and only if for every Banach space Y and every weakly compact operator T: Y → X, the space
= S ∘ T: S compact operator on X
is an ideal in = span(,T) if and only if for every Banach space Y and every weakly compact operator T: Y → X, there is a net of compact operators on X such that and in the strong operator topology. Similar results for dual spaces are also proved.
Let be a Banach space. We give characterizations of when is a -ideal in for every Banach space in terms of nets of finite rank operators approximating weakly compact operators. Similar characterizations are given for the cases when is a -ideal in for every Banach space , when is a -ideal in for every Banach space , and when is a -ideal in for every Banach space .
Download Results (CSV)