The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Given information about a harmonic function in two variables, consisting of a finite number of values of its Radon projections, i.e., integrals along some chords of the unit circle, we study the problem of interpolating these data by a harmonic polynomial. With the help of symbolic summation techniques we show that this interpolation problem has a unique solution in the case when the chords form a regular polygon. Numerical experiments for this and more general cases are presented.
For an injective map τ acting on the dyadic subintervals of the unit interval [0,1) we define the rearrangement operator , 0 < s < 2, to be the linear extension of the map
,
where denotes the -normalized Haar function supported on the dyadic interval I. We prove the following extrapolation result: If there exists at least one 0 < s₀ < 2 such that is bounded on , then for all 0 < s < 2 the operator is bounded on .
Download Results (CSV)