The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Dans cet article on étudie les fonctions surharmoniques dans un espace muni de la théorie axiomatique des fonctions harmoniques avec les axiomes 1, 2, 3 de M. Brelot, en supposant que les constantes sont harmoniques dans et qu’il n’existe pas de potentiel dans . Ainsi, dans la théorie axiomatique, on se propose de chercher à étendre les particularités du cas plan et quelques résultats sur les surfaces de Riemann du type parabolique. On démontre premièrement, en utilisant une notion de flux...
Let X×Y be the Cartesian product of two locally finite, connected networks that need not have reversible conductance. If X,Y represent random walks, it is known that if X×Y is recurrent, then X,Y are both recurrent. This fact is proved here by non-probabilistic methods, by using the properties of separately superharmonic functions. For this class of functions on the product network X×Y, the Dirichlet solution, balayage, minimum principle etc. are obtained. A unique integral representation is given...
Let be a Riemannian manifold without a biharmonic Green function defined on it and a domain in . A necessary and sufficient condition is given for the existence of a biharmonic Green function on .
Download Results (CSV)