The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Accurate Spectral Asymptotics for periodic operators

Victor Ivrii — 1999

Journées équations aux dérivées partielles

Asymptotics with sharp remainder estimates are recovered for number 𝐍 ( τ ) of eigenvalues of operator A ( x , D ) - t W ( x , x ) crossing level E as t runs from 0 to τ , τ . Here A is periodic matrix operator, matrix W is positive, periodic with respect to first copy of x and decaying as second copy of x goes to infinity, E either belongs to a spectral gap of A or is one its ends. These problems are first treated in papers of M. Sh. Birman, M. Sh. Birman-A. Laptev and M. Sh. Birman-T. Suslina.

Eigenvalue asymptotics for Neumann Laplacian in domains with ultra-thin cusps

Victor Ivrii

Séminaire Équations aux dérivées partielles

Asymptotics with sharp remainder estimates are recovered for number N ( τ ) of eigenvalues of the generalized Maxwell problem and for related Laplacians which are similar to Neumann Laplacian. We consider domains with ultra-thin cusps (with exp ( - | x | m + 1 ) width ; m > 0 ) and recover eigenvalue asymptotics with sharp remainder estimates.

Page 1

Download Results (CSV)