The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Some q-supercongruences for truncated basic hypergeometric series

Victor J. W. GuoJiang Zeng — 2015

Acta Arithmetica

For any odd prime p we obtain q-analogues of van Hamme’s and Rodriguez-Villegas’ supercongruences involving products of three binomial coefficients such as k = 0 ( p - 1 ) / 2 [ 2 k k ] q ² 3 ( q 2 k ) / ( ( - q ² ; q ² ) ² k ( - q ; q ) ² 2 k ² ) 0 ( m o d [ p ] ² ) for p≡ 3 (mod 4), k = 0 ( p - 1 ) / 2 [ 2 k k ] q ³ ( ( q ; q ³ ) k ( q ² ; q ³ ) k q 3 k ) ( ( q ; q ) k ² ) 0 ( m o d [ p ] ² ) for p≡ 2 (mod 3), where [ p ] = 1 + q + + q p - 1 and ( a ; q ) = ( 1 - a ) ( 1 - a q ) ( 1 - a q n - 1 ) . We also prove q-analogues of the Sun brothers’ generalizations of the above supercongruences. Our proofs are elementary in nature and use the theory of basic hypergeometric series and combinatorial q-binomial identities including a new q-Clausen type summation formula.

A q -congruence for a truncated 4 ϕ 3 series

Victor J. W. GuoChuanan Wei — 2021

Czechoslovak Mathematical Journal

Let Φ n ( q ) denote the n th cyclotomic polynomial in q . Recently, Guo, Schlosser and Zudilin proved that for any integer n > 1 with n 1 ( mod 4 ) , k = 0 n - 1 ( q - 1 ; q 2 ) k 2 ( q - 2 ; q 4 ) k ( q 2 ; q 2 ) k 2 ( q 4 ; q 4 ) k q 6 k 0 ( mod Φ n ( q ) 2 ) , where ( a ; q ) m = ( 1 - a ) ( 1 - a q ) ( 1 - a q m - 1 ) . In this note, we give a generalization of the above q -congruence to the modulus Φ n ( q ) 3 case. Meanwhile, we give a corresponding q -congruence modulo Φ n ( q ) 2 for n 3 ( mod 4 ) . Our proof is based on the ‘creative microscoping’ method, recently developed by Guo and Zudilin, and a 4 ϕ 3 summation formula.

q -analogues of two supercongruences of Z.-W. Sun

Cheng-Yang GuVictor J. W. Guo — 2020

Czechoslovak Mathematical Journal

We give several different q -analogues of the following two congruences of Z.-W. Sun: k = 0 ( p r - 1 ) / 2 1 8 k 2 k k 2 p r ( mod p 2 ) and k = 0 ( p r - 1 ) / 2 1 16 k 2 k k 3 p r ( mod p 2 ) , where p is an odd prime, r is a positive integer, and ( m n ) is the Jacobi symbol. The proofs of them require the use of some curious q -series identities, two of which are related to Franklin’s involution on partitions into distinct parts. We also confirm a conjecture of the latter author and Zeng in 2012.

Page 1

Download Results (CSV)