The relaxed energy for -valued maps and measurable weights
We classify nonconstant entire local minimizers of the standard Ginzburg–Landau functional for maps in satisfying a natural energy bound. Up to translations and rotations,such solutions of the Ginzburg–Landau system are given by an explicit solution equivariant under the action of the orthogonal group.
Homogenization of integral functionals is studied under the constraint that admissible maps have to take their values into a given smooth manifold. The notion of tangential homogenization is defined by analogy with the tangential quasiconvexity introduced by Dacorogna [ (1999) 185–206]. For energies with superlinear or linear growth, a -convergence result is established in Sobolev spaces, the homogenization problem in the space of functions of bounded variation being the object of [Babadjian...
Page 1