solutions of rate independent differential inclusions
We consider a class of evolution differential inclusions defining the so-called stop operator arising in elastoplasticity, ferromagnetism, and phase transitions. These differential inclusions depend on a constraint which is represented by a convex set that is called the characteristic set. For (bounded variation) data we compare different notions of solutions and study how the continuity properties of the solution operators are related to the characteristic set. In the finite-dimensional case...