A short proof of a theorem of Kano and Yu on factors in regular graphs.
Let k ≥ 2 be an integer. A function f: V(G) → −1, 1 defined on the vertex set V(G) of a graph G is a signed k-independence function if the sum of its function values over any closed neighborhood is at most k − 1. That is, Σx∈N[v] f(x) ≤ k − 1 for every v ∈ V(G), where N[v] consists of v and every vertex adjacent to v. The weight of a signed k-independence function f is w(f) = Σv∈V(G) f(v). The maximum weight w(f), taken over all signed k-independence functions f on G, is the signed k-independence...
Let G be a graph with vertex set V (G), and let f : V (G) → {−1, 1} be a two-valued function. If k ≥ 1 is an integer and Σx∈N(v) f(x) ≥ k for each v ∈ V (G), where N(v) is the neighborhood of v, then f is a signed total k-dominating function on G. A set {f1, f2, . . . , fd} of distinct signed total k-dominating functions on G with the property that Σdi=1 fi(x) ≤ k for each x ∈ V (G), is called a signed total (k, k)-dominating family (of functions) on G. The maximum number of functions in a signed...
Let G be a finite and simple graph with vertex set V (G), and let f V (G) → {−1, 1} be a two-valued function. If ∑x∈N|v| f(x) ≤ 1 for each v ∈ V (G), where N[v] is the closed neighborhood of v, then f is a signed 2-independence function on G. The weight of a signed 2-independence function f is w(f) =∑v∈V (G) f(v). The maximum of weights w(f), taken over all signed 2-independence functions f on G, is the signed 2-independence number α2s(G) of G. In this work, we mainly present upper bounds on α2s(G),...
Let D be a finite and simple digraph with the vertex set V(D), and let f:V(D) → -1,1 be a two-valued function. If for each v ∈ V(D), where N¯[v] consists of v and all vertices of D from which arcs go into v, then f is a signed dominating function on D. The sum f(V(D)) is called the weight w(f) of f. The minimum of weights w(f), taken over all signed dominating functions f on D, is the signed domination number of D. A set of signed dominating functions on D with the property that for each...
We consider finite graphs G with vertex set V(G). For a subset S ⊆ V(G), we define by G[S] the subgraph induced by S. By n(G) = |V(G) | and δ(G) we denote the order and the minimum degree of G, respectively. Let k be a positive integer. A subset S ⊆ V(G) is a connected global offensive k-alliance of the connected graph G, if G[S] is connected and |N(v) ∩ S | ≥ |N(v) -S | + k for every vertex v ∈ V(G) -S, where N(v) is the neighborhood of v. The connected global offensive k-alliance number is the...
Let be a graph with vertex set , and let be an integer. A subset is called a if every vertex has at least neighbors in . The -domination number of is the minimum cardinality of a -dominating set in . If is a graph with minimum degree , then we prove that In addition, we present a characterization of a special class of graphs attaining equality in this inequality.
Let k ≥ 1 be an integer. A signed total Roman k-dominating function on a graph G is a function f : V (G) → {−1, 1, 2} such that Ʃu2N(v) f(u) ≥ k for every v ∈ V (G), where N(v) is the neighborhood of v, and every vertex u ∈ V (G) for which f(u) = −1 is adjacent to at least one vertex w for which f(w) = 2. A set {f1, f2, . . . , fd} of distinct signed total Roman k-dominating functions on G with the property that Ʃdi=1 fi(v) ≤ k for each v ∈ V (G), is called a signed total Roman k-dominating family...
Let D be a finite and simple digraph with vertex set V (D). A signed total Roman dominating function (STRDF) on a digraph D is a function f : V (D) → {−1, 1, 2} satisfying the conditions that (i) ∑x∈N−(v) f(x) ≥ 1 for each v ∈ V (D), where N−(v) consists of all vertices of D from which arcs go into v, and (ii) every vertex u for which f(u) = −1 has an inner neighbor v for which f(v) = 2. The weight of an STRDF f is w(f) = ∑v∈V (D) f(v). The signed total Roman domination number γstR(D) of D is the...
A perfect independent set of a graph is defined to be an independent set with the property that any vertex not in has at least two neighbors in . For a nonnegative integer , a subset of the vertex set of a graph is said to be -independent, if is independent and every independent subset of with is a subset of . A set of vertices of is a super -independent set of if is -independent in the graph , where is the bipartite graph obtained from by deleting all edges...
Let ir(G) and γ(G) be the irredundance number and domination number of a graph G, respectively. The number of vertices and leaves of a graph G are denoted by n(G) and n₁(G). If T is a tree, then Lemańska [4] presented in 2004 the sharp lower bound γ(T) ≥ (n(T) + 2 - n₁(T))/3. In this paper we prove ir(T) ≥ (n(T) + 2 - n₁(T))/3. for an arbitrary tree T. Since γ(T) ≥ ir(T) is always valid, this inequality is an extension and improvement of Lemańska's result. ...
Let G be a simple graph, and let p be a positive integer. A subset D ⊆ V(G) is a p-dominating set of the graph G, if every vertex v ∈ V(G)-D is adjacent with at least p vertices of D. The p-domination number γₚ(G) is the minimum cardinality among the p-dominating sets of G. Note that the 1-domination number γ₁(G) is the usual domination number γ(G). If G is a nontrivial connected block graph, then we show that γ₂(G) ≥ γ(G)+1, and we characterize all connected block graphs with...
Page 1 Next