The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We comment on a problem of Mazur from “The Scottish Book" concerning second partial derivatives. We prove that if a function f(x,y) of real variables defined on a rectangle has continuous derivative with respect to y and for almost all y the function has finite variation, then almost everywhere on the rectangle the partial derivative exists. We construct a separately twice differentiable function whose partial derivative is discontinuous with respect to the second variable on a set of positive...
A function f: X → Y between topological spaces is said to be a weakly Gibson function if for any open connected set U ⊆ X. We prove that if X is a locally connected hereditarily Baire space and Y is a T₁-space then an -measurable mapping f: X → Y is weakly Gibson if and only if for any connected set C ⊆ X with dense connected interior the image f(C) is connected. Moreover, we show that each weakly Gibson -measurable mapping f: ℝⁿ → Y, where Y is a T₁-space, has a connected graph.
We investigate the Baire classification of mappings f: X × Y → Z, where X belongs to a wide class of spaces which includes all metrizable spaces, Y is a topological space, Z is an equiconnected space, which are continuous in the first variable. We show that for a dense set in X these mappings are functions of a Baire class α in the second variable.
We prove that if Köthe F-spaces X and Y on finite atomless measure spaces (ΩX; ΣX, µX) and (ΩY; ΣY; µY), respectively, with absolute continuous norms are isomorphic and have the property (for µ = µX and µ = µY, respectively) then the measure spaces (ΩX; ΣX; µX) and (ΩY; ΣY; µY) are isomorphic, up to some positive multiples. This theorem extends a result of A. Plichko and M. Popov concerning isomorphic classification of L p(µ)-spaces for 0 < p < 1. We also provide a new class of F-spaces...
We prove the result on Baire classification of mappings which are continuous with respect to the first variable and belongs to a Baire class with respect to the second one, where is a -space, is a topological space and is a strongly -metrizable space with additional properties. We show that for any topological space , special equiconnected space and a mapping of the -th Baire class there exists a strongly separately continuous mapping with the diagonal . For wide classes of spaces...
We use a new technique of measures on Boolean algebras to investigate narrow operators on vector lattices. First we prove that, under mild assumptions, every finite rank operator is strictly narrow (before it was known that such operators are narrow). Then we show that every order continuous operator from an atomless vector lattice to a purely atomic one is order narrow. This explains in what sense the vector lattice structure of an atomless vector lattice given by an unconditional basis is far...
For a non-isolated point of a topological space let be the smallest cardinality of a family of infinite subsets of such that each neighborhood of contains a set . We prove that
(a) each infinite compact Hausdorff space contains a non-isolated point with ;
(b) for each point with there is an injective sequence in that -converges to for some meager filter on ;
(c) if a functionally Hausdorff space contains an -convergent injective sequence for some meager filter...
Download Results (CSV)