On meager function spaces, network character and meager convergence in topological spaces

Taras O. Banakh; Volodymyr Mykhaylyuk; Lubomyr Zdomsky

Commentationes Mathematicae Universitatis Carolinae (2011)

  • Volume: 52, Issue: 2, page 273-281
  • ISSN: 0010-2628

Abstract

top
For a non-isolated point x of a topological space X let nw χ ( x ) be the smallest cardinality of a family 𝒩 of infinite subsets of X such that each neighborhood O ( x ) X of x contains a set N 𝒩 . We prove that (a) each infinite compact Hausdorff space X contains a non-isolated point x with nw χ ( x ) = 0 ; (b) for each point x X with nw χ ( x ) = 0 there is an injective sequence ( x n ) n ω in X that -converges to x for some meager filter on ω ; (c) if a functionally Hausdorff space X contains an -convergent injective sequence for some meager filter , then for every path-connected space Y that contains two non-empty open sets with disjoint closures, the function space C p ( X , Y ) is meager. Also we investigate properties of filters admitting an injective -convergent sequence in β ω .

How to cite

top

Banakh, Taras O., Mykhaylyuk, Volodymyr, and Zdomsky, Lubomyr. "On meager function spaces, network character and meager convergence in topological spaces." Commentationes Mathematicae Universitatis Carolinae 52.2 (2011): 273-281. <http://eudml.org/doc/246994>.

@article{Banakh2011,
abstract = {For a non-isolated point $x$ of a topological space $X$ let $\mathrm \{nw\}_\chi (x)$ be the smallest cardinality of a family $\mathcal \{N\}$ of infinite subsets of $X$ such that each neighborhood $O(x)\subset X$ of $x$ contains a set $N\in \mathcal \{N\}$. We prove that (a) each infinite compact Hausdorff space $X$ contains a non-isolated point $x$ with $\mathrm \{nw\}_\chi (x)=\aleph _0$; (b) for each point $x\in X$ with $\mathrm \{nw\}_\chi (x)=\aleph _0$ there is an injective sequence $(x_n)_\{n\in \omega \}$ in $X$ that $\mathcal \{F\}$-converges to $x$ for some meager filter $\mathcal \{F\}$ on $\omega $; (c) if a functionally Hausdorff space $X$ contains an $\mathcal \{F\}$-convergent injective sequence for some meager filter $\mathcal \{F\}$, then for every path-connected space $Y$ that contains two non-empty open sets with disjoint closures, the function space $C_p(X,Y)$ is meager. Also we investigate properties of filters $\mathcal \{F\}$ admitting an injective $\mathcal \{F\}$-convergent sequence in $\beta \omega $.},
author = {Banakh, Taras O., Mykhaylyuk, Volodymyr, Zdomsky, Lubomyr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {network character; meager convergent sequence; meager filter; meager space; function space; network character; meager convergent sequence; meager filter; meager space; function space},
language = {eng},
number = {2},
pages = {273-281},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On meager function spaces, network character and meager convergence in topological spaces},
url = {http://eudml.org/doc/246994},
volume = {52},
year = {2011},
}

TY - JOUR
AU - Banakh, Taras O.
AU - Mykhaylyuk, Volodymyr
AU - Zdomsky, Lubomyr
TI - On meager function spaces, network character and meager convergence in topological spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 2
SP - 273
EP - 281
AB - For a non-isolated point $x$ of a topological space $X$ let $\mathrm {nw}_\chi (x)$ be the smallest cardinality of a family $\mathcal {N}$ of infinite subsets of $X$ such that each neighborhood $O(x)\subset X$ of $x$ contains a set $N\in \mathcal {N}$. We prove that (a) each infinite compact Hausdorff space $X$ contains a non-isolated point $x$ with $\mathrm {nw}_\chi (x)=\aleph _0$; (b) for each point $x\in X$ with $\mathrm {nw}_\chi (x)=\aleph _0$ there is an injective sequence $(x_n)_{n\in \omega }$ in $X$ that $\mathcal {F}$-converges to $x$ for some meager filter $\mathcal {F}$ on $\omega $; (c) if a functionally Hausdorff space $X$ contains an $\mathcal {F}$-convergent injective sequence for some meager filter $\mathcal {F}$, then for every path-connected space $Y$ that contains two non-empty open sets with disjoint closures, the function space $C_p(X,Y)$ is meager. Also we investigate properties of filters $\mathcal {F}$ admitting an injective $\mathcal {F}$-convergent sequence in $\beta \omega $.
LA - eng
KW - network character; meager convergent sequence; meager filter; meager space; function space; network character; meager convergent sequence; meager filter; meager space; function space
UR - http://eudml.org/doc/246994
ER -

References

top
  1. Aviles Lopez A., Cascales S., Kadets V., Leonov A., The Schur l 1 theorem for filters, Zh. Mat. Fiz. Anal. Geom. 3 (2007), no. 4, 383–398. MR2376601
  2. Bartoszynski T., Goldstern M., Judah H., Shelah S., All meager filters may be null, Proc. Amer. Math. Soc. 117 (1993), no. 2, 515–521. Zbl0776.03023MR1111433
  3. van Douwen E., The integers and topology, in: Handbook of Set-Theoretic Topology (K. Kunen, J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 111–167. Zbl0561.54004MR0776622
  4. Ganichev M., Kadets V., Filter convergence in Banach spaces and generalized bases, in General Topology in Banach Spaces (T. Banakh, ed.), Nova Sci. Publ., Huntington, NY, 2001, pp. 61–69. Zbl1035.46009MR1901534
  5. García-Ferreira S., Malykhin V., A. Tamariz-Mascarúa A., Solutions and problems on convergence structures to ultrafilters, Questions Answers Gen. Topology 13 (1995), no. 2, 103–122. MR1350228
  6. Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  7. Hart K.P., Efimov's problem, in: Open Problems in Topology II (E. Pearl, ed.), Elsevier, Amsterdam, 2007, 171–177. MR2367385
  8. Lašnev N., On continuous decompositions and closed mappings of metric spaces, Dokl. Akad. Nauk SSSR 165 (1965), 756–758 (in Russian). MR0192478
  9. Lutzer D.J., McCoy R.A., 10.2140/pjm.1980.90.145, Pacific J. Math. 90 (1980), no. 1, 145–168. Zbl0481.54017MR0599327DOI10.2140/pjm.1980.90.145
  10. Ketonen J., On the existence of P -points in the Stone-Cech compactification of integers, Fund. Math. 92 (1976), no. 2, 91–94. Zbl0339.54035MR0433387
  11. Malykhin V.I., Tironi G., 10.1016/S0166-8641(99)00027-9, Topology Appl. 104 (2000), 181–190. Zbl0952.54003MR1780904DOI10.1016/S0166-8641(99)00027-9
  12. Mazur K., F σ -ideals and ω 1 ω 1 * -gaps in the Boolean algebras P ( ω ) / I , Fund. Math. 138 (1991), no. 2, 103–111. MR1124539
  13. Mykhaylyuk V., On questions connected with Talagrand's problem, Mat. Stud. 29 (2008), 81–88. MR2424602
  14. Pytkeev E.G., The Baire property of spaces of continuous functions, Mat. Zametki 38 (1985), no. 5, 726–740. MR0819632
  15. Pytkeev E.G., Spaces of continuous and Baire functions in weak topologies, Doktor Sci. Dissertation, Ekaterinburg, 1993 (in Russian). 
  16. Rudin M.E., Types of ultrafilters, 1966 Topology Seminar (Wisconsin, 1965), pp. 147–151, Ann. of Math. Studies, No. 60, Princeton Univ. Press, Princeton, N.J. Zbl0431.03033MR0216451
  17. Solecki S., 10.2307/420994, Bull. Symbolic Logic 2 (1996), no. 3, 339–348. Zbl0932.03060MR1416872DOI10.2307/420994
  18. Talagrand M., Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), no. 1, 13–43. Zbl0435.46023MR0579439
  19. Tkachuk V., Characterization of the Baire property of C p ( X ) by the properties of the space X , Cardinal Invariants and Mappings of Topological Spaces, Izhevsk, 1984, pp. 76–77 (in Russian). 
  20. Vaughan J., Small uncountable cardinals and topology, in: Open Problems in Topology (J. van Mill, G. Reed, eds.), North-Holland, Amsterdam, 1990, pp. 195–218. MR1078647

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.