On meager function spaces, network character and meager convergence in topological spaces
Taras O. Banakh; Volodymyr Mykhaylyuk; Lubomyr Zdomsky
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 2, page 273-281
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBanakh, Taras O., Mykhaylyuk, Volodymyr, and Zdomsky, Lubomyr. "On meager function spaces, network character and meager convergence in topological spaces." Commentationes Mathematicae Universitatis Carolinae 52.2 (2011): 273-281. <http://eudml.org/doc/246994>.
@article{Banakh2011,
abstract = {For a non-isolated point $x$ of a topological space $X$ let $\mathrm \{nw\}_\chi (x)$ be the smallest cardinality of a family $\mathcal \{N\}$ of infinite subsets of $X$ such that each neighborhood $O(x)\subset X$ of $x$ contains a set $N\in \mathcal \{N\}$. We prove that
(a) each infinite compact Hausdorff space $X$ contains a non-isolated point $x$ with $\mathrm \{nw\}_\chi (x)=\aleph _0$;
(b) for each point $x\in X$ with $\mathrm \{nw\}_\chi (x)=\aleph _0$ there is an injective sequence $(x_n)_\{n\in \omega \}$ in $X$ that $\mathcal \{F\}$-converges to $x$ for some meager filter $\mathcal \{F\}$ on $\omega $;
(c) if a functionally Hausdorff space $X$ contains an $\mathcal \{F\}$-convergent injective sequence for some meager filter $\mathcal \{F\}$, then for every path-connected space $Y$ that contains two non-empty open sets with disjoint closures, the function space $C_p(X,Y)$ is meager.
Also we investigate properties of filters $\mathcal \{F\}$ admitting an injective $\mathcal \{F\}$-convergent sequence in $\beta \omega $.},
author = {Banakh, Taras O., Mykhaylyuk, Volodymyr, Zdomsky, Lubomyr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {network character; meager convergent sequence; meager filter; meager space; function space; network character; meager convergent sequence; meager filter; meager space; function space},
language = {eng},
number = {2},
pages = {273-281},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On meager function spaces, network character and meager convergence in topological spaces},
url = {http://eudml.org/doc/246994},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Banakh, Taras O.
AU - Mykhaylyuk, Volodymyr
AU - Zdomsky, Lubomyr
TI - On meager function spaces, network character and meager convergence in topological spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 2
SP - 273
EP - 281
AB - For a non-isolated point $x$ of a topological space $X$ let $\mathrm {nw}_\chi (x)$ be the smallest cardinality of a family $\mathcal {N}$ of infinite subsets of $X$ such that each neighborhood $O(x)\subset X$ of $x$ contains a set $N\in \mathcal {N}$. We prove that
(a) each infinite compact Hausdorff space $X$ contains a non-isolated point $x$ with $\mathrm {nw}_\chi (x)=\aleph _0$;
(b) for each point $x\in X$ with $\mathrm {nw}_\chi (x)=\aleph _0$ there is an injective sequence $(x_n)_{n\in \omega }$ in $X$ that $\mathcal {F}$-converges to $x$ for some meager filter $\mathcal {F}$ on $\omega $;
(c) if a functionally Hausdorff space $X$ contains an $\mathcal {F}$-convergent injective sequence for some meager filter $\mathcal {F}$, then for every path-connected space $Y$ that contains two non-empty open sets with disjoint closures, the function space $C_p(X,Y)$ is meager.
Also we investigate properties of filters $\mathcal {F}$ admitting an injective $\mathcal {F}$-convergent sequence in $\beta \omega $.
LA - eng
KW - network character; meager convergent sequence; meager filter; meager space; function space; network character; meager convergent sequence; meager filter; meager space; function space
UR - http://eudml.org/doc/246994
ER -
References
top- Aviles Lopez A., Cascales S., Kadets V., Leonov A., The Schur theorem for filters, Zh. Mat. Fiz. Anal. Geom. 3 (2007), no. 4, 383–398. MR2376601
- Bartoszynski T., Goldstern M., Judah H., Shelah S., All meager filters may be null, Proc. Amer. Math. Soc. 117 (1993), no. 2, 515–521. Zbl0776.03023MR1111433
- van Douwen E., The integers and topology, in: Handbook of Set-Theoretic Topology (K. Kunen, J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 111–167. Zbl0561.54004MR0776622
- Ganichev M., Kadets V., Filter convergence in Banach spaces and generalized bases, in General Topology in Banach Spaces (T. Banakh, ed.), Nova Sci. Publ., Huntington, NY, 2001, pp. 61–69. Zbl1035.46009MR1901534
- García-Ferreira S., Malykhin V., A. Tamariz-Mascarúa A., Solutions and problems on convergence structures to ultrafilters, Questions Answers Gen. Topology 13 (1995), no. 2, 103–122. MR1350228
- Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Hart K.P., Efimov's problem, in: Open Problems in Topology II (E. Pearl, ed.), Elsevier, Amsterdam, 2007, 171–177. MR2367385
- Lašnev N., On continuous decompositions and closed mappings of metric spaces, Dokl. Akad. Nauk SSSR 165 (1965), 756–758 (in Russian). MR0192478
- Lutzer D.J., McCoy R.A., 10.2140/pjm.1980.90.145, Pacific J. Math. 90 (1980), no. 1, 145–168. Zbl0481.54017MR0599327DOI10.2140/pjm.1980.90.145
- Ketonen J., On the existence of -points in the Stone-Cech compactification of integers, Fund. Math. 92 (1976), no. 2, 91–94. Zbl0339.54035MR0433387
- Malykhin V.I., Tironi G., 10.1016/S0166-8641(99)00027-9, Topology Appl. 104 (2000), 181–190. Zbl0952.54003MR1780904DOI10.1016/S0166-8641(99)00027-9
- Mazur K., -ideals and -gaps in the Boolean algebras , Fund. Math. 138 (1991), no. 2, 103–111. MR1124539
- Mykhaylyuk V., On questions connected with Talagrand's problem, Mat. Stud. 29 (2008), 81–88. MR2424602
- Pytkeev E.G., The Baire property of spaces of continuous functions, Mat. Zametki 38 (1985), no. 5, 726–740. MR0819632
- Pytkeev E.G., Spaces of continuous and Baire functions in weak topologies, Doktor Sci. Dissertation, Ekaterinburg, 1993 (in Russian).
- Rudin M.E., Types of ultrafilters, 1966 Topology Seminar (Wisconsin, 1965), pp. 147–151, Ann. of Math. Studies, No. 60, Princeton Univ. Press, Princeton, N.J. Zbl0431.03033MR0216451
- Solecki S., 10.2307/420994, Bull. Symbolic Logic 2 (1996), no. 3, 339–348. Zbl0932.03060MR1416872DOI10.2307/420994
- Talagrand M., Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), no. 1, 13–43. Zbl0435.46023MR0579439
- Tkachuk V., Characterization of the Baire property of by the properties of the space , Cardinal Invariants and Mappings of Topological Spaces, Izhevsk, 1984, pp. 76–77 (in Russian).
- Vaughan J., Small uncountable cardinals and topology, in: Open Problems in Topology (J. van Mill, G. Reed, eds.), North-Holland, Amsterdam, 1990, pp. 195–218. MR1078647
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.