Sharp bounds for Green functions and jumping functions of subordinate killed Brownian motions in bounded domains.
Let =− where is a general one-dimensional Lévy process and an independent subordinator. Consider the times when a new supremum of is reached by a jump of the subordinator . We give a necessary and sufficient condition in order for such times to be discrete. When this is the case and drifts to −∞, we decompose the absolute supremum of at these times, and derive a Pollaczek–Hinchin-type formula for the distribution function of the supremum.
We study minimal thinness in the half-space for a large class of subordinate Brownian motions. We show that the same test for the minimal thinness of a subset of below the graph of a nonnegative Lipschitz function is valid for all processes in the considered class. In the classical case of Brownian motion this test was proved by Burdzy.
Page 1