The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the eigenvalue problem
in the case where the principal operator has rapid growth. By using a variational approach, we show that under certain conditions, almost all are eigenvalues.
We consider the eigenvalue problem
in the case where the principal operator has rapid growth. By using a variational approach, we show that under
certain conditions, almost all λ > 0 are eigenvalues.
The paper is about a sub-supersolution method for the prescribed mean curvature problem. We formulate the problem as a variational inequality and propose appropriate concepts of sub- and supersolutions for such inequality. Existence and enclosure results for solutions and extremal solutions between sub- and supersolutions are established.
Download Results (CSV)