Currently displaying 1 – 17 of 17

Showing per page

Order by Relevance | Title | Year of publication

Imposing psendocompact group topologies on Abeliau groups

W. ComfortI. Remus — 1993

Fundamenta Mathematicae

The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, m ( α ) 2 α . We show:    Theorem 4.12. Let G be Abelian with |G| = γ. If either m(α) ≤ α and m ( α ) r 0 ( G ) γ 2 α , or α > ω and α ω r 0 ( G ) 2 α , then G admits a pseudocompact group topology of weight α.  Theorem 4.15. Every connected, pseudocompact Abelian group G with wG = α ≥ ω satisfies r 0 ( G ) m ( α ) .  Theorem 5.2(b). If G is divisible Abelian with 2 r 0 ( G ) γ , then G admits at most 2 γ -many...

Extremal phenomena in certain classes of totally bounded groups

For various pairs of topological properties such that P ⇒ Q, we consider two questions: (A) Does every topological group topology with P extend properly to a topological group topology with Q, and (B) must a topological group with P have a proper dense subgroup with Q? We obtain negative results and positive results. Principal among the latter is the statement that any pseudocompact group G of uncountable weight which satisfies any of the following three conditions has both a strictly finer pseudocompact...

Cardinal invariants for κ-box products: weight, density character and Suslin number

The symbol ( X I ) κ (with κ ≥ ω) denotes the space X I : = i I X i with the κ-box topology; this has as base all sets of the form U = i I U i with U i open in X i and with | i I : U i X i | < κ . The symbols w, d and S denote respectively the weight, density character and Suslin number. Generalizing familiar classical results, the authors show inter alia: Theorem 3.1.10(b). If κ ≤ α⁺, |I| = α and each X i contains the discrete space 0,1 and satisfies w ( X i ) α , then w ( X κ ) = α < κ . Theorem 4.3.2. If ω κ | I | 2 α and X = ( D ( α ) ) I with D(α) discrete, |D(α)| = α, then d ( ( X I ) κ ) = α < κ . Corollaries 5.2.32(a) and...

The Bohr compactification, modulo a metrizable subgroup

W. ComfortF. Trigos-ArrietaS. Wu — 1993

Fundamenta Mathematicae

The authors prove the following result, which generalizes a well-known theorem of I. Glicksberg [G]: If G is a locally compact Abelian group with Bohr compactification bG, and if N is a closed metrizable subgroup of bG, then every A ⊆ G satisfies: A·(N ∩ G) is compact in G if and only if {aN:a ∈ A} is compact in bG/N. Examples are given to show: (a) the asserted equivalence can fail in the absence of the metrizability hypothesis, even when N ∩ G = {1}; (b) the asserted equivalence can hold for suitable...

Page 1

Download Results (CSV)