We discuss the permanence of strong liftings under the formation of projective limits. The results are based on an appropriate consistency condition of the liftings with the projective system called "self-consistency", which is fulfilled in many situations. In addition, we study the relationship of self-consistency and completion regularity as well as projective limits of lifting topologies.
Given two measure spaces equipped with liftings or densities (complete if liftings are considered) the existence of product liftings and densities with lifting invariant or density invariant sections is investigated. It is proved that if one of the marginal liftings is admissibly generated (a subclass of consistent liftings), then one can always find a product lifting which has the property that all sections determined by one of the marginal spaces are lifting invariant (Theorem 2.13). For a large...
Download Results (CSV)