The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
AbstractLet a C¹-function f:ℝ → ℝ be given which satisfies f(0) = 0, f'(ξ) < 0 for all ξ ∈ ℝ, and sup f < ∞ or -∞ < inf f. Let C = C([-1,0],ℝ). For an open-dense set of initial data the phase curves [0,∞) → C given by the solutions [-1,∞) → ℝ to the negative feedback equationx'(t) = -μx(t) + f(x(t-1)), with μ > 0,are absorbed into the positively invariant set S ⊂ C of data ϕ ≠ 0 with at most one sign change. The global attractor A of the semiflow restricted to S̅ is either the singleton...
CONTENTSIntroduction...........................................................................................................................................5 I.........................................................................................................................................................151. Preliminaries...................................................................................................................................152. Solutions of a family of differential...
Download Results (CSV)