Twistings, crossed coproducts, and Hopf-Galois coextensions.
A cut-vertex in a graph G is a vertex whose removal increases the number of connected components of G. An end-block of G is a block with a single cut-vertex. In this paper we establish upper bounds on the numbers of end-blocks and cut-vertices in a 4-regular graph G and claw-free 4-regular graphs. We characterize the extremal graphs achieving these bounds.
In this paper, we study the type Hopf algebras and present its braided and quasitriangular Hopf algebra structure. This generalizes well-known results on and type Hopf algebras. Finally, the classification of type Hopf algebras is given.
Let and be the Sweedler’s and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through and (equivalently, any bicrossed product between the Hopf algebras and ) must be isomorphic to one of the following four Hopf algebras: . The set of all matched pairs is explicitly described, and then the associated bicrossed product is given by generators and relations.
Let be a group generated by a set of finite order elements. We prove that any bicrossed product between the generalized Taft algebra and group algebra is actually the smash product . Then we show that the classification of these smash products could be reduced to the description of the group automorphisms of . As an application, the classification of is completely presented by generators and relations, where denotes the -cyclic group.
Page 1