The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Classes of Commutative Clean Rings

Wolf IberkleidWarren Wm. McGovern — 2010

Annales de la faculté des sciences de Toulouse Mathématiques

Let A be a commutative ring with identity and I an ideal of A . A is said to be I - c l e a n if for every element a A there is an idempotent e = e 2 A such that a - e is a unit and a e belongs to I . A filter of ideals, say , of A is if for each I there is a finitely generated ideal J such that J I . We characterize I -clean rings for the ideals 0 , n ( A ) , J ( A ) , and A , in terms of the frame of multiplicative Noetherian filters of ideals of A , as well as in terms of more classical ring properties.

When Min ( G ) - 1 has a clopen π -base

Ramiro Lafuente-RodriguezWarren Wm. McGovern — 2021

Mathematica Bohemica

It is our aim to contribute to the flourishing collection of knowledge centered on the space of minimal prime subgroups of a given lattice-ordered group. Specifically, we are interested in the inverse topology. In general, this space is compact and T 1 , but need not be Hausdorff. In 2006, W. Wm. McGovern showed that this space is a boolean space (i.e. a compact zero-dimensional and Hausdorff space) if and only if the l -group in question is weakly complemented. A slightly weaker topological property...

C * -points vs P -points and P -points

Jorge MartinezWarren Wm. McGovern — 2022

Commentationes Mathematicae Universitatis Carolinae

In a Tychonoff space X , the point p X is called a C * -point if every real-valued continuous function on C { p } can be extended continuously to p . Every point in an extremally disconnected space is a C * -point. A classic example is the space 𝐖 * = ω 1 + 1 consisting of the countable ordinals together with ω 1 . The point ω 1 is known to be a C * -point as well as a P -point. We supply a characterization of C * -points in totally ordered spaces. The remainder of our time is aimed at studying when a point in a product space is a C * -point....

The regular topology on C ( X )

Wolf IberkleidRamiro Lafuente-RodriguezWarren Wm. McGovern — 2011

Commentationes Mathematicae Universitatis Carolinae

Hewitt [Rings of real-valued continuous functions. I., Trans. Amer. Math. Soc. 64 (1948), 45–99] defined the m -topology on C ( X ) , denoted C m ( X ) , and demonstrated that certain topological properties of X could be characterized by certain topological properties of C m ( X ) . For example, he showed that X is pseudocompact if and only if C m ( X ) is a metrizable space; in this case the m -topology is precisely the topology of uniform convergence. What is interesting with regards to the m -topology is that it is possible, with...

Page 1

Download Results (CSV)