By using a supersymmetric gaussian representation, we transform the averaged Green's function for random walks in random potentials into a 2-point correlation function of a corresponding lattice field theory. We study the resulting lattice field theory using the Witten laplacian formulation. We obtain the asymptotics for the directional Lyapunov exponents.
We study a class of holomorphic complex measures, which are close in an appropriate sense to a complex Gaussian. We show that these measures can be reduced to a product measure of real Gaussians with the aid of a maximum principle in the complex domain. The formulation of this problem has its origin in the study of a certain class of random Schrödinger operators, for which we show that the expectation value of the Green’s function decays exponentially.
We construct time quasi-periodic solutions and prove almost global existence for the energy supercritical nonlinear Schrödinger equations on the torus in arbitrary dimensions. The main new ingredient is a selection in the Fourier space. This method is applicable to other nonlinear equations.
Download Results (CSV)