The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
estimates for convex domains of finite type in are known from [] for and from [] for . We want to show the same result for concave domains of finite type. As in the case of strictly pseudoconvex domain, we fit the method used in the convex case to the concave one by switching and in the integral kernel of the operator used in the convex case. However the kernel will not have the same behavior on the boundary as in the Diederich-Fischer-Fornæss-Alexandre work. To overcome...
We give in a real analytic almost complex structure , a real analytic hypersurface and a vector in the Levi null set at of , such that there is no germ of -holomorphic disc included in with and , although the Levi form of has constant rank. Then for any hypersurface and any complex structure , we give sufficient conditions under which there exists such a germ of disc.
Download Results (CSV)