Closed Geodesics on Homogeneous Spaces.
We explore some aspects of the topology of the family of 13-dimensional Bazaikin spaces. Using the computation of their homology rings, Pontryagin classes and linking forms, we show that there is only one Bazaikin space that is homotopy equivalent to a homogeneous space, i.e., the Berger space. Moreover, it is easily shown that there are only finitely many Bazaikin spaces in each homeomorphism type and that there are only finitely many positively curved ones for a given cohomology ring. In fact,...
In contrast to the homogeneous case, we show that there are compact cohomogeneity one manifolds that do not support invariant metrics of non-negative sectional curvature. In fact we exhibit infinite families of such manifolds including the exotic Kervaire spheres. Such examples exist for any codimension of the singular orbits except for the case when both are equal to two, where existence of non-negatively curved metrics is known.
Page 1