Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spaces.
1. Introduction. Given x in (0,1], let x = [d₁(x),d₂(x),...] denote the Engel expansion of x, that is, (1) , where is a sequence of positive integers satisfying d₁(x) ≥ 2 and for j ≥ 1. (See [3].) In [3], János Galambos proved that for almost all x ∈ (0,1], (2) He conjectured ([3], P132) that the Hausdorff dimension of the set where (2) fails is one. In this paper, we prove this conjecture: Theorem. . We use L¹ to denote the one-dimensional Lebesgue measure on (0,1] and to denote the Hausdorff...
For any , let be its Lüroth expansion. Denote by the partial sum of the first terms in the above series and call it the th convergent of in the Lüroth expansion. This paper is concerned with the efficiency of approximating real numbers by their convergents in the Lüroth expansion. It is shown that almost no points can have convergents as the optimal approximation for infinitely many times in the Lüroth expansion. Consequently, Hausdorff dimension is introduced to quantify the set of...
For x ∈ (0,1), the univoque set for x, denoted (x), is defined to be the set of β ∈ (1,2) such that x has only one representation of the form x = x₁/β + x₂/β² + ⋯ with . We prove that for any x ∈ (0,1), (x) contains a sequence increasing to 2. Moreover, (x) is a Lebesgue null set of Hausdorff dimension 1; both (x) and its closure are nowhere dense.
Let be a non-empty subset of positive integers. A partition of a positive integer into is a finite nondecreasing sequence of positive integers in with repetitions allowed such that . Here we apply Pólya’s enumeration theorem to find the number of partitions of into , and the number of distinct partitions of into . We also present recursive formulas for computing and .
Let be an infinite iterated function system on [0,1] satisfying the open set condition with the open set (0,1) and let Λ be its attractor. Then to any x ∈ Λ (except at most countably many points) corresponds a unique sequence of integers, called the digit sequence of x, such that . We investigate the growth speed of the digits in a general infinite iterated function system. More precisely, we determine the dimension of the set for any infinite subset B ⊂ ℕ, a question posed by Hirst for continued...
Let be a substitution over a 2-letter alphabet, say . If and begin with and respectively, has two fixed points beginning with and respectively. We characterize substitutions with two cofinal fixed points (i.e., which differ only by prefixes). The proof is a combinatorial one, based on the study of repetitions of words in the fixed points.
Let be a self-similar set with similarities ratio and Hausdorff dimension , let be a probability vector. The Besicovitch-type subset of is defined as where is the indicator function of the set . Let and be a gauge function, then we prove in this paper:(i) If , then moreover both of and are finite positive;(ii) If is a positive probability vector other than , then the gauge functions can be partitioned as follows ...
Fault tolerant control for uncertain systems with time varying state-delay is studied in this paper. Based on sliding mode controller design, a fault tolerant control method is proposed. By means of the feasibility of some linear matrix inequalities (LMIs), delay dependent sufficient condition is derived for the existence of a linear sliding surface which guarantees quadratic stability of the reduced-order equivalent system restricted to the sliding surface. A reaching motion controller, which can...
Page 1