The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, by using the least action principle, Sobolev's inequality and Wirtinger's inequality, some existence theorems are obtained for periodic solutions of second-order Hamiltonian systems with a p-Laplacian under subconvex condition, sublinear growth condition and linear growth condition. Our results generalize and improve those in the literature.
New oscillation criteria are obtained for all solutions of a class of first order nonlinear delay differential equations. Our results extend and improve the results recently obtained by Li and Kuang [7]. Some examples are given to demonstrate the advantage of our results over those in [7].
In this paper, by using the least action principle, Sobolev’s inequality and Wirtinger’s inequality, some existence theorems are obtained for periodic solutions of second-order Hamiltonian systems with a p-Laplacian under subconvex condition, sublinear growth condition and linear growth condition. Our results generalize and improve those in the literature.
The existence of solutions for boundary value problems for a nonlinear discrete system involving the -Laplacian is investigated. The approach is based on critical point theory.
The purpose of this paper is to study the existence and multiplicity of a periodic solution for the non-autonomous second-order system
By using the least action principle and the saddle point theorem, some new existence theorems are obtained for second-order -Laplacian systems with or without impulse under weak sublinear growth conditions, improving some existing results in the literature.
Download Results (CSV)