Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Periodic solutions for second-order Hamiltonian systems with a p -Laplacian

Xianhua TangXingyong Zhang — 2010

Annales UMCS, Mathematica

In this paper, by using the least action principle, Sobolev's inequality and Wirtinger's inequality, some existence theorems are obtained for periodic solutions of second-order Hamiltonian systems with a p-Laplacian under subconvex condition, sublinear growth condition and linear growth condition. Our results generalize and improve those in the literature.

Periodic solutions for second-order Hamiltonian systems with a p-Laplacian

Xingyong ZhangXianhua Tang — 2010

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica

In this paper, by using the least action principle, Sobolev’s inequality and Wirtinger’s inequality, some existence theorems are obtained for periodic solutions of second-order Hamiltonian systems with a p-Laplacian under subconvex condition, sublinear growth condition and linear growth condition. Our results generalize and improve those in the literature.

Existence of solutions for a class of second-order p -Laplacian systems with impulsive effects

Peng ChenXianhua Tang — 2014

Applications of Mathematics

The purpose of this paper is to study the existence and multiplicity of a periodic solution for the non-autonomous second-order system d d t ( | u ˙ ( t ) | p - 2 u ˙ ( t ) ) = F ( t , u ( t ) ) , a.e. t [ 0 , T ] , u ( 0 ) - u ( T ) = u ˙ ( 0 ) - u ˙ ( T ) = 0 , Δ u ˙ i ( t j ) = u ˙ i ( t j + ) - u ˙ i ( t j - ) = I i j ( u i ( t j ) ) , i = 1 , 2 , , N ; j = 1 , 2 , , m . By using the least action principle and the saddle point theorem, some new existence theorems are obtained for second-order p -Laplacian systems with or without impulse under weak sublinear growth conditions, improving some existing results in the literature.

Page 1

Download Results (CSV)