The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, the distributed output regulation problem of linear multi-agent systems with parametric-uncertain leaders is considered. The existing distributed output regulation results with exactly known leader systems is not applicable. To solve the leader-following with unknown parameters in the leader dynamics, a distributed control law based on an adaptive internal model is proposed and the convergence can be proved.
In this paper, the output synchronization control is considered for multi-agent port-Hamiltonian systems with link dynamics. By using Hamiltonian energy function and Casimir function comprehensively, the design method is proposed to overcome the difficulties taken by link dynamics. The Hamiltonian function is used to handle the dynamic of agent, while the Casimir function is constructed to deal with the dynamic of link. Thus the Lyapunov function is generated by modifying the Hamiltonian function...
Download Results (CSV)