The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For any given positive integer k, and any set A of nonnegative integers, let denote the number of solutions of the equation n = a₁ + ka₂ with a₁,a₂ ∈ A. We prove that if k,l are multiplicatively independent integers, i.e., log k/log l is irrational, then there does not exist any set A ⊆ ℕ such that both and hold for all n ≥ n₀. We also pose a conjecture and two problems for further research.
Recently, Miyazaki and Togbé proved that for any fixed odd integer b ≥ 5 with b ≠ 89, the Diophantine equation has only the solution (x,y,z) = (1,1,1). We give an extension of this result.
Let be positive integers and , where Let be a subset of . We prove that if
where denotes the largest integer less than or equal to and denotes the cardinality of even numbers in the interval , then contains a power of . We also show that these lower bounds are best possible.
Download Results (CSV)