Soit un opérateur parabolique sur écrit sous forme divergence et à coefficients lipschitziens relativement à une métrique adaptée. Nous cherchons à comparer près de la frontière le comportement relatif des -solutions positives sur un domaine “lipschitzien”. Dans un premier temps, nous démontrons un principe de Harnack uniforme pour certaines -solutions positives. Ce principe nous permet alors de démontrer une inégalité de Harnack forte à la frontière pour certains couples de -solutions positives....
Various tools can be used to calculate or estimate the dimension of measures. Using a probabilistic interpretation, we propose very simple proofs for the main inequalities related to this notion. We also discuss the case of quasi-Bernoulli measures and point out the deep link existing between the calculation of the dimension of auxiliary measures and the multifractal analysis.
A famous theorem of Carleson says that, given any function , , its Fourier series converges for almost every . Beside this property, the series may diverge at some point, without exceeding . We define the divergence index at as the infimum of the positive real numbers such that and we are interested in the size of the exceptional sets , namely the sets of with divergence index equal to . We show that quasi-all functions in have a multifractal behavior with respect to this definition....
Download Results (CSV)