The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In [The sup = max problem for the extent of generalized metric spaces, Comment. Math. Univ. Carolin. The special issue devoted to Čech 54 (2013), no. 2, 245–257], the author and Yajima discussed the sup = max problem for the extent and the Lindelöf degree of generalized metric spaces: (strict) -spaces, (strong) -spaces and semi-stratifiable spaces. In this paper, the sup = max problem for the Lindelöf degree of spaces having -diagonals and for the extent of spaces having point-countable bases...
It is known that all subspaces of ω₁² have the property that every pair of disjoint closed sets can be separated by disjoint -sets (see [4]). It has been conjectured that all subspaces of ω₁ⁿ also have this property for each n < ω. We exhibit a subspace of ⟨α,β,γ⟩ ∈ ω₁³: α ≤ β ≤ γ which does not have this property, thus disproving the conjecture. On the other hand, we prove that all subspaces of ⟨α,β,γ⟩ ∈ ω₁³: α < β < γ have this property.
It looks not useful to study the sup = max problem for extent, because there are simple examples refuting the condition. On the other hand, the sup = max problem for Lindelöf degree does not occur at a glance, because Lindelöf degree is usually defined by not supremum but minimum. Nevertheless, in this paper, we discuss the sup = max problem for the extent of generalized metric spaces by combining the sup = max problem for the Lindelöf degree of these spaces.
Download Results (CSV)