The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, the concepts of indecomposable matrices and fully indecomposable matrices over a distributive lattice are introduced, and some algebraic properties of them are obtained. Also, some characterizations of the set of all fully indecomposable matrices as a subsemigroup of the semigroup of all Hall matrices over the lattice are given.
Let be a positive integer, and the set of all
-circulant matrices over the Boolean algebra , . For any fixed -circulant matrix () in , we define an operation “” in as follows: for any in , where is the usual product of Boolean matrices. Then is a semigroup. We denote this semigroup by and call it the sandwich semigroup of generalized circulant Boolean matrices with sandwich matrix . Let be an idempotent element in and the maximal subgroup in containing...
Download Results (CSV)