The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Some approximation results in Musielak-Orlicz spaces

Ahmed YoussfiYoussef Ahmida — 2020

Czechoslovak Mathematical Journal

We prove the continuity in norm of the translation operator in the Musielak-Orlicz L M spaces. An application to the convergence in norm of approximate identities is given, whereby we prove density results of the smooth functions in L M , in both the modular and norm topologies. These density results are then applied to obtain basic topological properties.

Existence results for a class of nonlinear parabolic equations with two lower order terms

Ahmed AberqiJaouad BennounaM. HammoumiMounir MekkourAhmed Youssfi — 2014

Applicationes Mathematicae

We investigate the existence of renormalized solutions for some nonlinear parabolic problems associated to equations of the form ⎧ ( e β u - 1 ) / t - d i v ( | u | p - 2 u ) + d i v ( c ( x , t ) | u | s - 1 u ) + b ( x , t ) | u | r = f in Q = Ω×(0,T), ⎨ u(x,t) = 0 on ∂Ω ×(0,T), ⎩ ( e β u - 1 ) ( x , 0 ) = ( e β u - 1 ) ( x ) in Ω. with s = (N+2)/(N+p) (p-1), c ( x , t ) ( L τ ( Q T ) ) N , τ = (N+p)/(p-1), r = (N(p-1) + p)/(N+2), b ( x , t ) L N + 2 , 1 ( Q T ) and f ∈ L¹(Q).

Existence of solutions for some quasilinear p ( x ) -elliptic problem with Hardy potential

Elhoussine AzroulMohammed BouzianiHassane HjiajAhmed Youssfi — 2019

Mathematica Bohemica

We consider the anisotropic quasilinear elliptic Dirichlet problem - i = 1 N D i a i ( x , u , u ) + | u | s ( x ) - 1 u = f + λ | u | p 0 ( x ) - 2 u | x | p 0 ( x ) in Ω , u = 0 on Ω , where Ω is an open bounded subset of N containing the origin. We show the existence of entropy solution for this equation where the data f is assumed to be in L 1 ( Ω ) and λ is a positive constant.

Page 1

Download Results (CSV)