The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

Rectangular covers of products missing diagonals

Yukinobu Yajima — 1994

Commentationes Mathematicae Universitatis Carolinae

We give a characterization of a paracompact Σ -space to have a G δ -diagonal in terms of three rectangular covers of X 2 Δ . Moreover, we show that a local property and a global property of a space X are given by the orthocompactness of ( X × β X ) Δ .

The sup = max problem for the extent of generalized metric spaces

Yasushi HirataYukinobu Yajima — 2013

Commentationes Mathematicae Universitatis Carolinae

It looks not useful to study the sup = max problem for extent, because there are simple examples refuting the condition. On the other hand, the sup = max problem for Lindelöf degree does not occur at a glance, because Lindelöf degree is usually defined by not supremum but minimum. Nevertheless, in this paper, we discuss the sup = max problem for the extent of generalized metric spaces by combining the sup = max problem for the Lindelöf degree of these spaces.

Page 1

Download Results (CSV)