Let be a compact subset of a separable Hilbert space with finite fractal dimension , and an orthogonal projection in of rank greater than or equal to . For every , there exists an orthogonal projection in of the same rank as , which is injective when restricted to and such that . This result follows from Mañé’s paper. Thus the inverse of the restricted mapping is well defined. It is natural to ask whether there exists a universal modulus of continuity for the inverse of Mañé’s...
We present a simplified proof of a theorem proved recently concerning the number of singular points of weak solutions to the Navier-Stokes equations. If a weak solution belongs to , then the set of all possible singular points of in is at most finite at every time .
In the context of suitable weak solutions to the Navier-Stokes equations we present local conditions of Prodi-Serrin’s type on velocity and pressure under which is a regular point of . The conditions are imposed exclusively on the outside of a sufficiently narrow space-time paraboloid with the vertex and the axis parallel with the -axis.
In the context of the weak solutions of the Navier-Stokes equations we study the regularity of the pressure and its derivatives in the space-time neighbourhood of regular points. We present some global and local conditions under which the regularity is further improved.
We prove that there exists a suitable weak solution of the Navier-Stokes equation, which satisfies the generalized energy inequality for every nonnegative test function. This improves the famous result on existence of a suitable weak solution which satisfies this inequality for smooth nonnegative test functions with compact support in the space-time.
The evolution Boussinesq equations describe the evolution of the temperature and velocity fields of viscous incompressible Newtonian fluids. Very often, they are a reasonable model to render relevant phenomena of flows in which the thermal effects play an essential role. In the paper we prescribe non-Dirichlet boundary conditions on a part of the boundary and prove the existence and uniqueness of solutions to the Boussinesq equations on a (short) time interval. The length of the time interval depends...
Some results on regularity of weak solutions to the Navier-Stokes equations published recently in [3] follow easily from a classical theorem on compact operators. Further, weak solutions of the Navier-Stokes equations in the space are regular.
Download Results (CSV)