The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let p be an odd prime with p ≡ 1 mod 4, k be any positive integer, ψ be any fourth-order character mod p. In this paper, we use the analytic method and the properties of character sums mod p to study the computational problem of G(k, p) = τk(ψ)+τk(ψ), and give an interesting fourth-order linear recurrence formula for it, where τ(ψ) denotes the classical Gauss sums.
The main purpose of this paper is to study the mean value properties of a sum analogous to character sums over short intervals by using the mean value theorems for the Dirichlet L-functions, and to give some interesting asymptotic formulae.
In this paper we study the asymptotic behavior of the mean value of Dedekind sums, and give a sharper asymptotic formula.
Download Results (CSV)