The magnetic Schrödinger operator and reverse Hölder class
We consider the Schrödinger operators in where the nonnegative potential belongs to the reverse Hölder class for some . We obtain the optimal estimates for the operators and where . In particular we show that is a Calderón-Zygmund operator if and are Calderón-Zygmund operators if .
Let -div be a second order elliptic operator with real, symmetric, bounded measurable coefficients on or on a bounded Lipschitz domain subject to Dirichlet boundary condition. For any fixed , a necessary and sufficient condition is obtained for the boundedness of the Riesz transform on the space. As an application, for , we establish the boundedness of Riesz transforms on Lipschitz domains for operators with coefficients. The range of is sharp. The closely related boundedness of ...
We establish a Carleman type inequality for the subelliptic operator in , , where , . As a consequence, we show that has the strong unique continuation property at points of the degeneracy manifold if the potential is locally in certain spaces.
We consider initial-boundary value problems for a parabolic system in a Lipschitz cylinder. When the space dimension is three, we obtain estimates for the solutions when the lateral data taken from the best possible range of L-spaces.
For a family of elliptic operators with rapidly oscillating periodic coefficients, we study the convergence rates for Dirichlet eigenvalues and bounds of the normal derivatives of Dirichlet eigenfunctions. The results rely on an estimate in for solutions with Dirichlet condition.
Page 1