The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem

Zdzisław BrzeźniakJan van Neerven — 2000

Studia Mathematica

Let H be a separable real Hilbert space and let E be a separable real Banach space. We develop a general theory of stochastic convolution of ℒ(H,E)-valued functions with respect to a cylindrical Wiener process W t H t [ 0 , T ] with Cameron-Martin space H. This theory is applied to obtain necessary and sufficient conditions for the existence of a weak solution of the stochastic abstract Cauchy problem (ACP) d X t = A X t d t + B d W t H (t∈ [0,T]), X 0 = 0 almost surely, where A is the generator of a C 0 -semigroup S ( t ) t 0 of bounded linear operators on...

Stochastic evolution equations driven by Liouville fractional Brownian motion

Zdzisław BrzeźniakJan van NeervenDonna Salopek — 2012

Czechoslovak Mathematical Journal

Let H be a Hilbert space and E a Banach space. We set up a theory of stochastic integration of ( H , E ) -valued functions with respect to H -cylindrical Liouville fractional Brownian motion with arbitrary Hurst parameter 0 < β < 1 . For 0 < β < 1 2 we show that a function Φ : ( 0 , T ) ( H , E ) is stochastically integrable with respect to an H -cylindrical Liouville fractional Brownian motion if and only if it is stochastically integrable with respect to an H -cylindrical fractional Brownian motion. We apply our results to stochastic evolution equations...

Page 1

Download Results (CSV)