Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

Anti-invariant Riemannian submersions from almost Hermitian manifolds

Bayram Ṣahin — 2010

Open Mathematics

We introduce anti-invariant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds. We give an example, investigate the geometry of foliations which are arisen from the definition of a Riemannian submersion and check the harmonicity of such submersions. We also find necessary and sufficient conditions for a Langrangian Riemannian submersion, a special anti-invariant Riemannian submersion, to be totally geodesic. Moreover, we obtain decomposition theorems for the total manifold...

Biharmonic Riemannian maps

Bayram Ṣahin — 2011

Annales Polonici Mathematici

We give necessary and sufficient conditions for Riemannian maps to be biharmonic. We also define pseudo-umbilical Riemannian maps as a generalization of pseudo-umbilical submanifolds and show that such Riemannian maps put some restrictions on the target manifolds.

Warped product submanifolds of Kaehler manifolds with a slant factor

Bayram Sahin — 2009

Annales Polonici Mathematici

Recently, we showed that there exist no warped product semi-slant submanifolds in Kaehler manifolds. On the other hand, Carriazo introduced anti-slant submanifolds as a particular class of bi-slant submanifolds. In this paper, we study such submanifolds in detail and show that they are useful to define a new kind of warped product submanifolds of Kaehler manifolds. In this direction, we obtain the existence of warped product hemi-slant (anti-slant) submanifolds with examples. We give a characterization...

Semi-slant Riemannian maps into almost Hermitian manifolds

Kwang-Soon ParkBayram Şahin — 2014

Czechoslovak Mathematical Journal

We introduce semi-slant Riemannian maps from Riemannian manifolds to almost Hermitian manifolds as a generalization of semi-slant immersions, invariant Riemannian maps, anti-invariant Riemannian maps and slant Riemannian maps. We obtain characterizations, investigate the harmonicity of such maps and find necessary and sufficient conditions for semi-slant Riemannian maps to be totally geodesic. Then we relate the notion of semi-slant Riemannian maps to the notion of pseudo-horizontally weakly conformal...

Page 1

Download Results (CSV)