The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 17 of 17

Showing per page

Order by Relevance | Title | Year of publication

Sur les fonctions harmoniques conjuguées et les séries de Fourier

A. Kolmogoroff — 1925

Fundamenta Mathematicae

Théorème: Si f(θ) est une fonction sommable, si de plus f(ρ,θ)=1/(2π) ∫_(-π}^(+π) f(α) (1-ρ^2)/(1+ρ^2-2ρ cos(α-θ))dα, alors, z tendant vers e^(iθ) le long d'un chemin quelconque non tangent à la circonférence, la fonction harmonique g(z) conjuguée à f(z) tend pour presque toutes les valeurs de θ vers une limite déterminée g(θ)= - 1/(2π) ∫_(-π}^(+π) f(θ+α)/tg((α)/2)dα, l'integrale etant comprise comme lim_(ϵ → 0) ∫_(-π)^(+ϵ)∫_(-ϵ)^(+π). Le but de cette note est de démontrer que la fonction |g(θ)|^(1-ϵ)...

Page 1

Download Results (CSV)