Relative boundedness and compactness theory for second-order differential operators.
We generalize a well-known separation condition of Everitt and Giertz to a class of weighted symmetric partial differential operators defined on domains in . Also, for symmetric second-order ordinary differential operators we show that where is a singular point guarantees separation of on its minimal domain and extend this criterion to the partial differential setting. As a particular example it is shown that is separated on its minimal domain if is superharmonic. For the criterion...
Page 1