The concept of a $0$-ideal in $0$-distributive posets is introduced. Several properties of $0$-ideals in $0$-distributive posets are established. Further, the interrelationships between $0$-ideals and $\alpha $-ideals in $0$-distributive posets are investigated. Moreover, a characterization of prime ideals to be $0$-ideals in $0$-distributive posets is obtained in terms of non-dense ideals. It is shown that every $0$-ideal of a $0$-distributive meet semilattice is semiprime. Several counterexamples are discussed.

The concept of $\alpha $-ideals in posets is introduced. Several properties of $\alpha $-ideals in $0$-distributive posets are studied. Characterization of prime ideals to be $\alpha $-ideals in $0$-distributive posets is obtained in terms of minimality of ideals. Further, it is proved that if a prime ideal $I$ of a $0$-distributive poset is non-dense, then $I$ is an $\alpha $-ideal. Moreover, it is shown that the set of all $\alpha $-ideals $\alpha \mathrm{Id}\left(P\right)$ of a poset $P$ with $0$ forms a complete lattice. A result analogous to separation theorem for finite $0$-distributive...

The concept of a semiprime ideal in a poset is introduced. Characterizations of semiprime ideals in a poset $P$ as well as characterizations of a semiprime ideal to be prime in $P$ are obtained in terms of meet-irreducible elements of the lattice of ideals of $P$ and in terms of maximality of ideals. Also, prime ideals in a poset are characterized.

Several characterizations of 0-distributive posets are obtained by using the prime ideals as well as the semiprime ideals. It is also proved that if every proper $l$-filter of a poset is contained in a proper semiprime filter, then it is $0$-distributive. Further, the concept of a semiatom in 0-distributive posets is introduced and characterized in terms of dual atoms and also in terms of maximal annihilator. Moreover, semiatomic 0-distributive posets are defined and characterized. It is shown that...

Download Results (CSV)