The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let F be a graph and let , denote nonempty families of graphs. We write F → (,) if in any 2-coloring of edges of F with red and blue, there is a red subgraph isomorphic to some graph from G or a blue subgraph isomorphic to some graph from H. The graph F without isolated vertices is said to be a (,)-minimal graph if F → (,) and F - e not → (,) for every e ∈ E(F).
We present a technique which allows to generate infinite family of (,)-minimal graphs if we know some special graphs. In particular, we...
Let ₁,₂ be additive hereditary properties of graphs. A (₁,₂)-decomposition of a graph G is a partition of E(G) into sets E₁, E₂ such that induced subgraph has the property , i = 1,2. Let us define a property ₁⊕₂ by G: G has a (₁,₂)-decomposition.
A property D is said to be decomposable if there exists nontrivial additive hereditary properties ₁, ₂ such that D = ₁⊕₂. In this paper we determine the completeness of some decomposable properties and we characterize the decomposable properties of completeness...
A linear forest is a forest in which every component is a path. It is known that the set of vertices V(G) of any outerplanar graph G can be partitioned into two disjoint subsets V₁,V₂ such that induced subgraphs ⟨V₁⟩ and ⟨V₂⟩ are linear forests (we say G has an (LF, LF)-partition). In this paper, we present an extension of the above result to the class of planar graphs with a given number of internal vertices (i.e., vertices that do not belong to the external face at a certain fixed embedding of...
For a given graph G and a sequence ₁, ₂,..., ₙ of additive hereditary classes of graphs we define an acyclic (₁, ₂,...,Pₙ)-colouring of G as a partition (V₁, V₂,...,Vₙ) of the set V(G) of vertices which satisfies the following two conditions:
1. for i = 1,...,n,
2. for every pair i,j of distinct colours the subgraph induced in G by the set of edges uv such that and is acyclic.
A class R = ₁ ⊙ ₂ ⊙ ... ⊙ ₙ is defined as the set of the graphs having an acyclic (₁, ₂,...,Pₙ)-colouring. If ⊆ R,...
Download Results (CSV)