Partitions of some planar graphs into two linear forests
Piotr Borowiecki; Mariusz Hałuszczak
Discussiones Mathematicae Graph Theory (1997)
- Volume: 17, Issue: 1, page 95-102
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Borowiecki, P. Mihók, Hereditary properties of graphs, in: Advances in Graph Theory (Vishwa International Publications, 1991) 41-68.
- [2] P. Borowiecki, P-Bipartitions of Graphs, Vishwa International J. GraphTheory 2 (1993) 109-116.
- [3] I. Broere, C.M. Mynhardt, Generalized colourings of outerplanar and planar graphs, in: Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 151-161.
- [4] W. Goddard, Acyclic colourings of planar graphs, Discrete Math. 91 (1991) 91-94, doi: 10.1016/0012-365X(91)90166-Y. Zbl0742.05041
- [5] T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications, New York, 1995). Zbl0971.05046
- [6] P. Mihók, On the vertex partition numbers, in: M. Fiedler, ed., Graphs and Other Combinatorial Topics, Proc. Third Czech. Symp. Graph Theory, Prague, 1982 (Teubner-Verlag, Leipzig, 1983) 183-188.
- [7] K.S. Poh, On the Linear Vertex-Arboricity of a Planar Graph, J. Graph Theory 14 (1990) 73-75, doi: 10.1002/jgt.3190140108. Zbl0705.05016
- [8] J. Wang, On point-linear arboricity of planar graphs, Discrete Math. 72 (1988) 381-384, doi: 10.1016/0012-365X(88)90229-4. Zbl0665.05010