Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Strengthened Moser’s conjecture, geometry of Grunsky coefficients and Fredholm eigenvalues

Samuel Krushkal — 2007

Open Mathematics

The Grunsky and Teichmüller norms ϰ(f) and k(f) of a holomorphic univalent function f in a finitely connected domain D ∋ ∞ with quasiconformal extension to ^ are related by ϰ(f) ≤ k(f). In 1985, Jürgen Moser conjectured that any univalent function in the disk Δ* = z: |z| > 1 can be approximated locally uniformly by functions with ϰ(f) < k(f). This conjecture has been recently proved by R. Kühnau and the author. In this paper, we prove that approximation is possible in a stronger sense, namely,...

Page 1

Download Results (CSV)