Strengthened Moser’s conjecture, geometry of Grunsky coefficients and Fredholm eigenvalues
Open Mathematics (2007)
- Volume: 5, Issue: 3, page 551-580
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H. Grunsky: “Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen”, Math. Z., Vol. 45, (1939), pp. 29–61. http://dx.doi.org/10.1007/BF01580272 Zbl0022.15103
- [2] R. Kühnau: “Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen”, Math. Nachr., Vol. 48, (1971), pp. 77–105. http://dx.doi.org/10.1002/mana.19710480107 Zbl0226.30021
- [3] C. Pommerenke: Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
- [4] I.V. Zhuravlev: “Univalent functions and Teichmüller spaces”, Preprint: Inst. of Mathematics, Novosibirsk, 1979, p. 23 (Russian). Zbl0467.30037
- [5] S.L. Krushkal and R. Kühnau: Quasikonforme Abbildungen-neue Methoden und Anwendungen, Teubner-Texte zur Math., Bd. 54, Teubner, Leipzig, 1983. Zbl0539.30001
- [6] R. Kühnau: “Möglichst konforme Spiegelung an einer Jordankurve”, Jber. Deutsch. Math. Verein., Vol. 90, (1988), pp. 90–109. Zbl0638.30021
- [7] S.L. Krushkal: “Grunsky coefficient inequalities, Carathéodory metric and extremal quasiconformal mappings”, Comment. Math. Helv., Vol. 64, (1989), pp. 650–660. http://dx.doi.org/10.1007/BF02564699 Zbl0697.30016
- [8] S.L. Krushkal and R. Kühnau: “Grunsky inequalities and quasiconformal extension”, Israel J. Math., Vol. 152, (2006), pp. 49–59. Zbl1126.30013
- [9] R. Kühnau: “Zu den Grunskyschen Coeffizientenbedingungen”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., Vol. 6, (1981), pp. 125–130. Zbl0454.30016
- [10] R. Kühnau: “Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend für Q-quasikonforme Fortsetzbarkeit?”, Comment. Math. Helv., Vol. 61, (1986), pp. 290–307. http://dx.doi.org/10.1007/BF02621917 Zbl0605.30023
- [11] S.L. Krushkal: “Beyond Moser’s conjecture on Grunsky inequalities”, Georgian Math. J., Vol. 12, (2005), pp. 485–492. Zbl1087.30042
- [12] Y.L. Shen: “Pull-back operators by quasisymmetric functions and invariant metrics on Teichmüller spaces”, Complex Variables, Vol. 42, (2000), pp. 289–307. Zbl1023.30024
- [13] L. Ahlfors: “An extension of Schwarz’s lemma”, Trans. Amer. Math. Soc., Vol. 43, (1938), pp. 359–364. http://dx.doi.org/10.2307/1990065 Zbl64.0315.04
- [14] D. Gaier: Konstruktive Methoden der konformen Abbildung, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. Zbl0132.36702
- [15] R. Kühnau: “Zur Berechnung der Fredholmschen Eigenwerte ebener Kurven”, Z. Angew. Math. Mech., Vol. 66, (1986), pp. 193–200. http://dx.doi.org/10.1002/zamm.19860660602 Zbl0608.65092
- [16] M. Schiffer: “Fredholm eigenvalues and Grunsky matrices”, Ann. Polon. Math., Vol. 39, (1981), pp. 149–164.
- [17] G. Schober: “Estimates for Fredholm eigenvalues based on quasiconformal mapping.” In: Numerische, insbesondere approximationstheoretische Behandlung von Funktiongleichungen, Lecture Notes in Math., Vol. 333, Springer-Verlag, Berlin, (1973), pp. 211–217. http://dx.doi.org/10.1007/BFb0060699
- [18] S.E. Warschawski: “On the effective determination of conformal maps”, In: L. Ahlfors, E. Calabi et al. (Eds.): Contribution to the Theory of Riemann surfaces, Princeton Univ. Press, Princeton, (1953), pp. 177–188. Zbl0052.35403
- [19] L. Ahlfors: “Remarks on the Neumann-Poincaré integral equation”, Pacific J. Math. Vol. 2, (1952), pp. 271–280. Zbl0047.07907
- [20] S.L. Krushkal: “Quasiconformal extensions and reflections”, In: R. Kühnau (Ed.): Handbook of Complex Analysis: Geometric Function Theory, Vol. II, Elsevier Science, Amsterdam, 2005, pp. 507–553.
- [21] K. Strebel: “On the existence of extremal Teichmueller mappings”, J. Anal. Math, Vol. 30, (1976), pp. 464–480. Zbl0334.30013
- [22] F.P. Gardiner and N. Lakic: Quasiconformal Teichmüller Theory, Amer. Math. Soc., 2000.
- [23] S. Dineen: The Schwarz Lemma, Clarendon Press, Oxford, 1989.
- [24] S. Kobayayshi: Hyperbolic Complex Spaces, Springer, New York, 1998.
- [25] C.J. Earle, I. Kra and S.L. Krushkal: “Holomorphic motions and Teichmüller spaces”, Trans. Amer. Math. Soc., Vol. 944, (1994), pp. 927–948. http://dx.doi.org/10.2307/2154750 Zbl0812.30018
- [26] C.J. Earle and S. Mitra: “Variation of moduli under holomorphic motions”, In: Stony Brook, NY, 1998: The tradition of Ahlfors and Bers, Contemp. Math. Vol. 256, Amer. Math. Soc., Providence, RI, 2000, pp. 39–67. Zbl0972.30005
- [27] H.L. Royden: “Automorphisms and isometries of Teichmüller space”, Advances in the Theory of Riemann Surfaces (Ann. of Math. Stud.), Vol. 66, Princeton Univ. Press, Princeton, (1971), pp. 369–383.
- [28] S.L. Krushkal: “Plurisubharmonic features of the Teichmüller metric”, Publications de l’Institut Mathématique-Beograd, Nouvelle série, Vol. 75, (2004), pp. 119–138. Zbl1079.30019
- [29] N.A. Lebedev: The Area Principle in the Theory of Univalent Functions, Nauka, Moscow, 1975 (Russian). Zbl0747.30015
- [30] I.M. Milin: “Univalent Functions and Orthonormal Systems”, Transl. of mathematical monographs, vol. 49, Transl. of Odnolistnye funktcii i normirovannie systemy, Amer. Math. Soc., Providence, RI, 1977.
- [31] M. Schiffer and D. Spencer: Functionals of finite Riemann Surfaces, Princeton Univ. Press, Princeton, 1954.
- [32] S. L. Krushkal: “Schwarzian derivative and complex Finsler metrics”, Contemporary Math., Vol. 382, (2005), pp. 243–262. Zbl1085.30009
- [33] D. Minda: “The strong form of Ahlfors’ lemma”, Rocky Mountain J. Math., Vol. 17, (1987), pp. 457–461. http://dx.doi.org/10.1216/RMJ-1987-17-3-457 Zbl0628.30031
- [34] M. Abate and G. Patrizio: “Isometries of the Teichmüller metric”, Ann. Scuola Super. Pisa Cl. Sci., Vol. 26, (1998), pp. 437–452. Zbl0933.32027
- [35] V. Božin, N. Lakic, V. Markovic and M. Mateljević: “Unique extremality”, J. Anal. Math., Vol. 75, (1998), pp. 299–338. http://dx.doi.org/10.1007/BF02788704 Zbl0929.30017
- [36] C.J. Earle and Zong Li: “Isometrically embedded polydisks in infinite dimensional Teichmüller spaces”, J. Geom. Anal., Vol. 9, (1999), pp. 51–71. Zbl0963.32004
- [37] M. Heins: “A class of conformal metrics”, Nagoya Math. J., Vol. 21, (1962), pp. 1–60. Zbl0113.05603
- [38] S.L. Krushkal: Quasiconformal Mappings and Riemann Surfaces, Wiley, New York, 1979.
- [39] S.L. Krushkal: “A bound for reflections across Jordan curves”, Georgian Math. J., Vol. 10, (2003), pp. 561–572. Zbl1061.30041
- [40] R. Kühnau: “Über die Grunskyschen Koeffizientenbedingungen”, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, Vol. 54, (2000), pp. 53–60.
- [41] O. Lehto: Univalent Functions and Teichmüller Spaces, Springer-Verlag, New York, 1987.
- [42] Yu.G. Reshetnyak: “Two-dimensional manifolds of bounded curvature”, Geometry, IV, Encyclopaedia Math. Sci., Vol. 70, Springer, Berlin, 1993, pp. 3–163, 245–250. Engl. transl. from: iTwo-dimensional manifolds of bounded curvature, Geometry, 4, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 189, 273–277, 279 (Russian).
- [43] H.L. Royden: “The Ahlfors-Schwarz lemma: the case of equality”, J. Anal. Math., Vol. 46, (1986), pp. 261–270. Zbl0604.30027