Displaying similar documents to “Stochastic calculus with respect to fractional Brownian motion”

Differential equations driven by fractional Brownian motion.

David Nualart, Aurel Rascanu (2002)

Collectanea Mathematica

Similarity:

A global existence and uniqueness result of the solution for multidimensional, time dependent, stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H > 1/2 is proved. It is shown, also, that the solution has finite moments. The result is based on a deterministic existence and uniqueness theorem whose proof uses a contraction principle and a priori estimates.

Probabilistic models for vortex filaments based on fractional brownian motion.

David Nualart, Carles Rovira, Samy Tindel (2001)

RACSAM

Similarity:

Se introduce una estructura de vorticidad basada en el movimiento browniano fraccionario con parámetro de Hurst H > 1/2 . El objeto de esta nota es presentar el siguiente resultado: Bajo una condición de integrabilidad adecuada sobre la medida ρ que controla la concentración de la vorticidad a lo largo de los filamentos, la energía cinética de la configuración está bien definida y tiene momentos de todos los órdenes.

Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion

Tianyang Nie, Aurel Răşcanu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper, using direct and inverse images for fractional stochastic tangent sets, we establish the deterministic necessary and sufficient conditions which control that the solution of a given stochastic differential equation driven by the fractional Brownian motion evolves in some particular sets . As a consequence, a comparison theorem is obtained.

On the regularity of stochastic currents, fractional brownian motion and applications to a turbulence model

Franco Flandoli, Massimiliano Gubinelli, Francesco Russo (2009)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study the pathwise regularity of the map ↦()= 〈( ), d 〉, where is a vector function on ℝ belonging to some Banach space , is a stochastic process and the integral is some version of a stochastic integral defined via regularization. A continuous version of this map, seen as a random element of the topological dual of will be called . We give sufficient conditions for the current to live in some Sobolev space of distributions...