On the regularity of stochastic currents, fractional brownian motion and applications to a turbulence model

Franco Flandoli; Massimiliano Gubinelli; Francesco Russo

Annales de l'I.H.P. Probabilités et statistiques (2009)

  • Volume: 45, Issue: 2, page 545-576
  • ISSN: 0246-0203

Abstract

top
We study the pathwise regularity of the map φ↦I(φ)=∫0T〈φ(Xt), dXt〉, where φ is a vector function on ℝd belonging to some Banach space V, X is a stochastic process and the integral is some version of a stochastic integral defined via regularization. A continuous version of this map, seen as a random element of the topological dual of V will be called stochastic current. We give sufficient conditions for the current to live in some Sobolev space of distributions and we provide elements to conjecture that those are also necessary. Next we verify the sufficient conditions when the process X is a d-dimensional fractional brownian motion (fBm); we identify regularity in Sobolev spaces for fBm with Hurst index H∈(1/4, 1). Next we provide some results about general Sobolev regularity of currents when W is a standard Wiener process. Finally we discuss applications to a model of random vortex filaments in turbulent fluids.

How to cite

top

Flandoli, Franco, Gubinelli, Massimiliano, and Russo, Francesco. "On the regularity of stochastic currents, fractional brownian motion and applications to a turbulence model." Annales de l'I.H.P. Probabilités et statistiques 45.2 (2009): 545-576. <http://eudml.org/doc/78033>.

@article{Flandoli2009,
abstract = {We study the pathwise regularity of the map φ↦I(φ)=∫0T〈φ(Xt), dXt〉, where φ is a vector function on ℝd belonging to some Banach space V, X is a stochastic process and the integral is some version of a stochastic integral defined via regularization. A continuous version of this map, seen as a random element of the topological dual of V will be called stochastic current. We give sufficient conditions for the current to live in some Sobolev space of distributions and we provide elements to conjecture that those are also necessary. Next we verify the sufficient conditions when the process X is a d-dimensional fractional brownian motion (fBm); we identify regularity in Sobolev spaces for fBm with Hurst index H∈(1/4, 1). Next we provide some results about general Sobolev regularity of currents when W is a standard Wiener process. Finally we discuss applications to a model of random vortex filaments in turbulent fluids.},
author = {Flandoli, Franco, Gubinelli, Massimiliano, Russo, Francesco},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {pathwise stochastic integrals; currents; forward and symmetric integrals; fractional brownian motion; vortex filaments; pathwise stochastic integral; Sobolev space},
language = {eng},
number = {2},
pages = {545-576},
publisher = {Gauthier-Villars},
title = {On the regularity of stochastic currents, fractional brownian motion and applications to a turbulence model},
url = {http://eudml.org/doc/78033},
volume = {45},
year = {2009},
}

TY - JOUR
AU - Flandoli, Franco
AU - Gubinelli, Massimiliano
AU - Russo, Francesco
TI - On the regularity of stochastic currents, fractional brownian motion and applications to a turbulence model
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 2
SP - 545
EP - 576
AB - We study the pathwise regularity of the map φ↦I(φ)=∫0T〈φ(Xt), dXt〉, where φ is a vector function on ℝd belonging to some Banach space V, X is a stochastic process and the integral is some version of a stochastic integral defined via regularization. A continuous version of this map, seen as a random element of the topological dual of V will be called stochastic current. We give sufficient conditions for the current to live in some Sobolev space of distributions and we provide elements to conjecture that those are also necessary. Next we verify the sufficient conditions when the process X is a d-dimensional fractional brownian motion (fBm); we identify regularity in Sobolev spaces for fBm with Hurst index H∈(1/4, 1). Next we provide some results about general Sobolev regularity of currents when W is a standard Wiener process. Finally we discuss applications to a model of random vortex filaments in turbulent fluids.
LA - eng
KW - pathwise stochastic integrals; currents; forward and symmetric integrals; fractional brownian motion; vortex filaments; pathwise stochastic integral; Sobolev space
UR - http://eudml.org/doc/78033
ER -

References

top
  1. [1] E. Alos, J. A. Leon and D. Nualart. Stochastic Stratonovich calculus for fractional Brownian motion with Hurst parameter less than 1/2. Taiwanese J. Math. 5 (2001) 609–632. Zbl0989.60054MR1849782
  2. [2] K. D. Elworthy, X.-M. Li and M. Yor. The importance of strictly local martingales; applications to radial Ornstein–Uhlenbeck processes. Probab. Theory Related Fields 115 (1999) 325–355. Zbl0960.60046MR1725406
  3. [3] P. Embrechts and P. M. Maejima. Selfsimilar Processes. Princeton University Press, Princeton, NJ, 2002. Zbl1008.60003MR1920153
  4. [4] F. Flandoli. On a probabilistic description of small scale structures in 3D fluids. Annal. Inst. H. Poincaré Probab. Statist. 38 (2002) 207–228. Zbl1017.76074MR1899111
  5. [5] F. Flandoli and M. Gubinelli. The Gibbs ensemble of a vortex filament. Probab. Theory Related Fields 122 (2002) 317–340. Zbl0992.60058MR1892850
  6. [6] F. Flandoli and M. Gubinelli. Statistics of a vortex filament model. Electron. J. Prob. 10 (2005) 865–900. Zbl1109.76026MR2164032
  7. [7] F. Flandoli and M. Gubinelli. Random Currents and Probabilistic Models of Vortex Filaments. Birkäuser, Basel, 2004. Zbl1064.60118MR2096285
  8. [8] F. Flandoli and I. Minelli. Probabilistic models of vortex filaments. Czechoslovak Math. J. 51 (2001) 713–731. Zbl1001.60057MR1864038
  9. [9] F. Flandoli, M. Giaquinta, M. Gubinelli and V. M. Tortorelli. Stochastic currents. Stochastic Process. Appl. 115 (2005) 1583–1601. Zbl1087.60043MR2158261
  10. [10] J.-F. Le Gall. Sur le temps local d’intersection du mouvement brownien plan et la méthode de renormalisation de Varadhan. Séminaire de probabilités, XIX, 1983/84 314–331. Lecture Notes in Math. 1123. Springer, Berlin, 1985. Zbl0563.60072MR889492
  11. [11] M. Gradinaru, F. Russo and P. Vallois. Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index H≥¼. Ann. Probab. 31 (2003) 1772–1820. Zbl1059.60067MR2016600
  12. [12] M. Gradinaru, I. Nourdin, F. Russo and P. Vallois. m-order integrals and generalized Itô’s formula: the case of a fractional Brownian motion with any Hurst index. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 781–806. Zbl1083.60045MR2144234
  13. [13] M. Gradinaru and I. Nourdin. Approximation at first and second order of m-order integrals of the fractional Brownian motion and of certain semimartingales. Electron. J. Probab. 8 (2003) 26 pp. Zbl1063.60079MR2041819
  14. [14] M. Gubinelli. Controlling rough paths. J. Funct. Anal. 216 (2004) 86–140. Zbl1058.60037MR2091358
  15. [15] T. J. Lyons and Z. Qian. System Control and Rough Paths. Oxford University Press, 2002. Zbl1029.93001MR2036784
  16. [16] T. J. Lyons. Differential equations driven by rough signals. Revista Math. Iberoamericana 14 (1998) 215–310. Zbl0923.34056MR1654527
  17. [17] D. Nualart, C. Rovira and S. Tindel. Probabilistic models for vortex filaments based on fractional Brownian motion. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 95 (2001) 213–218. Zbl1011.60032MR1902426
  18. [18] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 1983. Zbl0516.47023MR710486
  19. [19] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Springer-Verlag, Berlin, 1999. Zbl0917.60006MR1725357
  20. [20] F. Russo and P. Vallois. Stochastic calculus with respect to continuous finite quadratic variation processes. Stochastics Stochastics Rep. 70 (2000) 1–40. Zbl0981.60053MR1785063
  21. [21] F. Russo and P. Vallois. Elements of stochastic calculus via regularization. Séminaire de Probabilités XL 147–186. C. Donati-Martin, M. Emery, A. Rouault and C. Stricker (Eds). Lecture Notes in Math. 1899. Springer, Berlin, Heidelberg, 2007. Zbl1126.60045MR2409004
  22. [22] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam, 1978. Zbl0387.46032MR503903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.