The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Absolutely continuous invariant measures for maps with flat tops”

Most expanding maps have no absolutely continuous invariant measure

Anthony Quas (1999)

Studia Mathematica

Similarity:

We consider the topological category of various subsets of the set of expanding maps from a manifold to itself, and show in particular that a generic C 1 expanding map of the circle has no absolutely continuous invariant probability measure. This is in contrast with the situation for C 2 or C 1 + ε expanding maps, for which it is known that there is always a unique absolutely continuous invariant probability measure.

A characterization of ω-limit sets for piecewise monotone maps of the interval

Andrew D. Barwell (2010)

Fundamenta Mathematicae

Similarity:

For a piecewise monotone map f on a compact interval I, we characterize the ω-limit sets that are bounded away from the post-critical points of f. If the pre-critical points of f are dense, for example when f is locally eventually onto, and Λ ⊂ I is closed, invariant and contains no post-critical point, then Λ is the ω-limit set of a point in I if and only if Λ is internally chain transitive in the sense of Hirsch, Smith and Zhao; the proof relies upon symbolic dynamics. By identifying...

Some dynamical properties of S-unimodal maps

Tomasz Nowicki (1993)

Fundamenta Mathematicae

Similarity:

We study 1) the slopes of central branches of iterates of S-unimodal maps, comparing them to the derivatives on the critical trajectory, 2) the hyperbolic structure of Collet-Eckmann maps estimating the exponents, and under a summability condition 3) the images of the density one under the iterates of the Perron-Frobenius operator, 4) the density of the absolutely continuous invariant measure.