Some dynamical properties of S-unimodal maps
Fundamenta Mathematicae (1993)
- Volume: 142, Issue: 1, page 45-57
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [BL] A. Blokh and M. Lyubich, Measurable dynamics of S-unimodal maps of the interval, Ann. Sci. École Norm. Sup. 24 (1991), 545-573. Zbl0790.58024
- [CE1] P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhäuser, Boston 1980. Zbl0458.58002
- [CE2] P. Collet and J.-P. Eckmann, Positive Liapounov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynamical Systems 3 (1983), 13-46. Zbl0532.28014
- [K] G. Keller, Exponents, attractors and Hopf decomposition for interval maps, ibid. 10 (1990), 717-744. Zbl0715.58020
- [KN] G. Keller and T. Nowicki, Spectral theory, zeta functions and the distribution of periodic points for the Collet-Eckmann maps, Comm. Math. Phys. 149 (1992), 31-69. Zbl0763.58024
- [L] F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynamical Systems 1 (1981), 77-93. Zbl0487.28015
- [MS] W. de Melo and S. van Strien, One Dimensional Dynamic, book manuscript.
- [M] M. Misiurewicz, Absolutely continuous invariant measures for certain maps of an interval, Publ. Math. I.H.E.S. 53 (1981), 17-51. Zbl0477.58020
- [N1] T. Nowicki, On some dynamical properties of S-unimodal maps of an interval, Fund. Math. 126 (1985), 27-43. Zbl0608.58030
- [N2] T. Nowicki, Symmetric S-unimodal mappings and positive Liapunov exponents, Ergodic Theory Dynamical Systems 5 (1985), 611-616. Zbl0615.28009
- [N3] T. Nowicki, A positive Liapunov exponent for the critical value of an S-unimodal mapping implies uniform hyperbolicity, ibid. 8 (1988), 425-435. Zbl0638.58021
- [NS1] T. Nowicki and S. van Strien, Hyperbolicity properties of multimodal Collet-Eckmann maps without Schwarzian derivative conditions, Trans. Amer. Math. Soc. 321 (1990), 793-810. Zbl0731.58021
- [NS2] T. Nowicki and S. van Strien, Absolutely continuous invariant measures for unimodal maps satisfying Collet-Eckmann conditions, Invent. Math. 93 (1988), 619-635. Zbl0659.58034
- [NS3] T. Nowicki and S. van Strien, Invariant measures exist under a summability condition for unimodal maps, ibid. 105 (1991), 123-136. Zbl0736.58030
- [Sz] B. Szewc, Perron-Frobenius operator in spaces of smooth functions on an interval, Ergodic Theory Dynamical Systems 4 (1984), 613-641.
- [Y] L.-S. Young, Decay of correlations for certain quadratic maps, Comm. Math. Phys. 146 (1992), 123-138. Zbl0760.58030